参考答案，提示及评分细则

1．B 由核反应方程质量数守恒和核电荷数守恒可得 $\lambda_{\mathrm{Z}} \mathrm{X}$ 为 He ，所以为 α 粒子， B 对， A 错。经过一个半衰期，钚原子核的质量变为原来的一半而并非二空化钚的质量。C 错。 α 粒子具有很强的电离能力。但穿透能力弱，D 错．

2．D 对单个铁环受力分析可得，α 越小，上方铁环施加的弹力 $F_{\text {上 }}$ 越大，A 错。对整条铁链，$F_{1}=F_{2 N}=\sqrt{2} n \mathrm{mg}, B$错。对半条铁链，$F_{N}=n m g$ ，C 错。对第 $(N-1)$ 个铁环，$F_{N-1}=\sqrt{(m g)^{2}+(n m g)^{2}}=\sqrt{n^{2}+1} \cdot m g$ ，D 对

3．B 以风力发电机扫风面积为底，长为 $v t$ 的空气柱体为研究对象，根据能量守恒定律可得：
$P_{\text {电 }}=\frac{E_{K} \times 30 \%}{t}=\frac{\frac{1}{2} \rho s v t \cdot v^{2} \times 30 \%}{t}=\frac{1}{2} \rho s v^{3} \times 30 \%=1.67 \times 10^{7} \mathrm{~W}, \mathrm{~B}$ 对。
4．D 各点处 q 所受的电场力指向轨迹内侧，且指向场源电荷 Q ，所以 $q<0$ ，带负电，A 错，根据 F $=k \frac{Q q}{r^{2}}, r$ 越小，电场力 F 越大，加速度越大，浙以 $a_{A}<a_{B}<a_{C}<a_{D}, B$ 错．因为 $U=E \cdot \Delta r, \overline{E_{A B}}$ $<\overline{E_{B C}}, U_{A B}<U_{B C}$ ，所以电场力的功 $\left|W_{A B}\right|<\left|W_{B C}\right|, C$ 错。根据电场力与运动轨迹的关系，点电荷 q 从 $A \rightarrow B \rightarrow C \rightarrow D$ 运动的过程中，电场力一直做正功，电势能一直减小，所以 $E_{P A}>E_{P B}>E_{P C}$
 $>E_{P D}, D$ 对．

5．C 根据乙图，$U_{0}=220 \mathrm{~V}$ ，增加并联灯泡的数量，等效电阻减小，变压器输出功率将增加，输人功率也随之增加， $P_{\text {人 }}=I_{1} U_{0}, I_{1}$ 增大，R_{1} 的电压 $\Delta U=I_{1} R_{1}$ 增大，変压器的翰入电压 $U_{1}=U_{0}-I_{1} R_{1}$ 减小，$U_{2}=\frac{n_{2}}{n_{1}} U_{1}$ 减小，A 错。灯泡要正常发光 $U_{2}=40 \mathrm{~V}, I_{2}=n I_{\text {涣 }}=n \times \frac{40}{16}=2.5 n(\mathrm{~A}), U_{1}=\frac{n_{1}}{n_{2}} U_{2}=200 \mathrm{~V}, \Delta U=U_{0}-U_{1}=20 \mathrm{~V}$ ，又因为 $\Delta U=$ $I_{1} R_{1}=\frac{n_{2}}{n_{1}} I_{2} R_{1}$ ，所以 $R_{1}=\frac{20}{0.5 n}=\frac{40}{n} \Omega, B$ 错，C 对。交流电的效率 $\eta=\frac{n I_{\text {䫝 }} U_{2}}{\frac{n_{2}}{n_{1}} n I_{\text {㿟 }} U_{0}} \times 100 \%=\frac{U_{2}}{\frac{n_{2}}{n_{1}} U_{0}} \times 100 \%=\frac{40}{44} \times$ $100 \% \approx 91 \%$ ．D 错．

6．C 由波的图像可得 $\lambda=10 \mathrm{~m}$ ，又因为机珹波的周期 $T=4 \mathrm{~s}$ ，可以推得波源正位于波韸位置，而前方波已经出现了一个波峰和波谷，所以波源已经振动了 $1 \frac{1}{4} T$ ，此时距离 O 点 $r=1 \frac{1}{4} \lambda=12.5 \mathrm{~m}$ 质点刚开始向上振动，$B, ~ F$ 距离 O 点均为 $10 \sqrt{2} \mathrm{~m}$ $\approx 14.14 \mathrm{~m}>12.5 \mathrm{~m}$ ，所以 $B, ~ F$ 均没有开始振动，$A, ~ B$ 均错．再经过 1 个周期，$t=$ 9 s 时，第一个波峰和波谷的位置如外层的实线和虚线所示，$C, ~ E$ 距离 O 点均为
 $10 \sqrt{5} \mathrm{~m} \approx 22.36 \mathrm{~m}<2 \frac{1}{4} \lambda=22.5 \mathrm{~m}$ ，所以 $C, ~ E$ 处质点已经开始向上运动但没有达到波峰，C 对，D 错．

7．BC 在介质 1,2 分界面发生全反射的临界光线的全反射角 $\sin C_{2}=\frac{1}{n_{21}}=\frac{5}{8}$ ，经过两玻琌分界面发生全反射的光

照射到地面上的点距 S 掫近为 $2 d_{2} \tan C_{2}=2 \times 5 \sqrt{3} \times \frac{5}{\sqrt{39}} \approx 13.87 \mathrm{~m}, \mathrm{~A}$ 错．在介质 1 的上表面发生全反射的临界光线的全反射角 $\sin C_{1}=\frac{1}{n_{1}}=\frac{4}{5}, C_{1}=53^{\circ}$ ，此光线在由介质 1 进人介质 2 的分界面上的入射角满足 $\frac{\sin C_{1}}{\sin \theta}=\frac{1}{n_{21}}=\frac{8}{5}$ ，解得 $\sin \theta=\frac{1}{2}, \theta=30^{\circ}, B$ 对，亮斑的半径 $r=d_{2} \tan 30^{\circ}+d_{1} \tan$

$53^{\circ}=5 \sqrt{3} \times \frac{\sqrt{3}}{3}+3 \times \frac{4}{3} \mathrm{~cm}=9 \mathrm{~cm}, S=\pi r^{2}=81 \pi(\mathrm{~cm})^{2}, C$ 对．光在介质中运动的总时间 $t=t_{1}+t_{2}=\frac{S_{2}}{v_{1}}+\frac{S_{2}}{v_{2}}=$
$\frac{\frac{d_{1}}{\cos 53^{\circ}}}{\frac{c}{n_{1}}}+\frac{\frac{d_{z}}{\cos 30^{\circ}}}{\frac{c}{n_{2}}}=\frac{5 \times 10^{-2}}{\frac{3 \times 10^{8}}{\frac{5}{4}}}+\frac{10 \times 10^{-2}}{\frac{3 \times 10^{8}}{2}}=8.75 \times 10^{-10} \mathrm{~s}, D$ 错．
8．AC $B \rightarrow C$ 段没有空气阻力做功，机械能守佰，而 $B, ~ C$ 处引力势能相等，所以动能也相等．A 对．$A B$ 段因为克服阻力做功，动能减小，所以在 A 处的速度大小大于 B 处的速度大小，B 棤．$B \rightarrow E \rightarrow C$ 段只受引力作用，嫦娥五号的乾迹是椭圆的一部分。此过程中者陆器处于完全失重状态，C 对。 $C \rightarrow D$ 段媂娥五号先加速后减速，所以先失重后超重．D 错。
9．BC B 沿 $M \rightarrow Q \rightarrow N$ 路径运动到 N 点，环 A 对 B 的弹力指向圆心，弹力由 A 下部分圆弧的内表面提供，不受榞擦力，$v_{N}=v_{M}=\frac{I}{m}$ ．若 B 沿 $M \rightarrow P \rightarrow N$ 路径运动到 P 点时，满足 $v_{P}>\sqrt{g R}$ ，环 A 对 B 的弹力指向圆心，弹力由 A 上部分圆弧的内表面提供，也不受栐擦力，此时需满足 $v_{M}=\sqrt{\left(v_{p}\right)^{2}+2 g R}>\sqrt{3 g R}$ ，即 $I=m v_{\mathrm{M}}>m \sqrt{3 g R}$ ，到 N 点时的速度也为 $v_{N}=v_{M}=\frac{I}{m}$ 。但如果 $I=m v_{M}<m \sqrt{3 g R}$ ，环 A 给 B 的弹力将先由内表面提供再由外表面提供，当弹力由外表面提供时，由于需要克服縻擦力做功，到达 N 的速度 $v_{N}<v_{M}=\frac{I}{m}, A$ 错．若 B 沿 $M \rightarrow P \rightarrow N$路径运动到 P 点时，即使满足 $v_{P}>\sqrt{g R}$ ．由运动图像可得 $t_{\mathrm{MQN}}<t_{\mathrm{MPP}}$ ，若 $I=m v_{M}<m \sqrt{3 g R}$ ，克服摩擦力做功使得 $t_{M P S}$ 变得更大，所以 $t_{\text {MQN }}<t_{M P S}$ 恒成立，B 对．当 $I=2 m \sqrt{g R}, v_{P}=\sqrt{\left(v_{M}\right)^{2}-2 g R}=\sqrt{2 g R}$ ，由牛顿第二定律可得，$F+m g=\frac{m v_{p}^{2}}{R}$ ，解得 $F=m g$ ，当 $I=m \sqrt{2 g R}<m \sqrt{3 g R}$ ，需要克服摩擦力做功，B 的速度将小于 $v_{P}=$ $\sqrt{\left(\frac{I}{m}\right)^{2}-2 g R}$ ，此时 $F=\frac{m v_{p}^{2}}{R}-m g<\frac{I^{2}}{m R}-3 m g, D$ 错．
10．BD 对整个系统，物体向下加速运动时满足 $\left(m+m_{0}\right) g-M g-\frac{n^{2} B^{2} L^{2} v}{R}=\left(m+m_{0}+M\right) a, v$ 增大，a 减小，物体向上加速运动时满足 $M g-\left(m+m_{0}\right) g-\frac{n^{2} B^{2} L^{2} v}{R}=\left(m+m_{0}+M\right) a, v$ 增大 a 也减小，所以系统做加速度减小的加速运动然后做匀速运动，A 错．物体向下运动达到平衡时，$\left(m_{\max }+m_{0}\right) g=M g+\frac{n^{2} B^{2} L^{2} v_{m}}{R}, m_{\max }=$ 60 kg ，物体向上运动达到平衡时，$M g=\left(m_{\text {min }}+m_{0}\right) g+\frac{n^{2} B^{2} L^{2} v_{\text {me }}}{R}, m_{\text {min }}=20 \mathrm{~kg}, \Delta m=40 \mathrm{~kg}, B$ 对．$m=30 \mathrm{~kg}$ ，系统刚释放时，速度为零，安培力为零，由牛顿第二定律可得：$M g-\left(m+m_{0}\right) g=\left(m+m_{0}+M\right) a, a=\frac{10}{9} \mathrm{~m} / \mathrm{s}^{2}, C$错．$m=30 \mathrm{~kg}$ 。平衡时 $M g=\left(m+m_{\circ}\right) g+\frac{n^{2} B^{2} L^{2} v_{1}}{R}, v_{1}=1 \mathrm{~m} / \mathrm{s}$ ，根据能量守恒定律，$\left(M g-m-m_{0}\right) g H=Q+$
$\frac{1}{2}\left(M+m+m_{0}\right) v_{1}^{2}, Q=9955 \mathrm{~J}, D$ 对．
11．（1） $\mathrm{A}, ~ \mathrm{~B}$（2 分）
（2）$m_{1} \sqrt{S_{o}}=m_{1} \sqrt{S_{1}}+m_{2} \sqrt{S_{2}}$（2 分）
（3）是（2 分）
解析：小车碰洂过程时间极短，若满足动量守恒，有 $m_{1} v_{0}=m_{1} v_{1}+m_{2} v_{2}$ ，而根据小车在水平轨道上做匀减速直至静止，$v^{2}=2 a S, a=\mu g, v$ 正比于 \sqrt{S} ，所以 $m_{1} v_{0}=m_{1} v_{1}+m_{2} v_{2}$ 等价于 $m_{1} \sqrt{S_{0}}=m_{1} \sqrt{S_{1}}+m_{2} \sqrt{S_{2}}$ ，所以只需测量 $O M, ~ O P, ~ O N$ 的距离即可，$A B$ 正确．若水平轨道略微倾斜，$a=\mu g \cos \theta+g \sin \theta$ 是个定值，v 仍然正比于 $\sqrt{S}, m_{1} \sqrt{S_{0}}=m_{1} \sqrt{S_{1}}+m_{2} \sqrt{S_{2}}$ 成立。
12．（1）如右图所示（2 分）
（2） 40 （1 分）内部电源的电动势澸小使得欧姆调零后中值电阻减小（2 分）
100（2 分）
（3）66（1 分） 8.25 （2 分）．
解析：红表筺与欧姆表内电源负极相连，所以需要将妾安表负接线柱与红表笔相连．指针指的欧姆挡读数为 4.0 ，读出电阻示数为 $4 \times 10 \Omega=40 \Omega$ ，此时从方，用表直流电流挡来看，指针指在满猏电流的 $\frac{4}{5} I_{8}$ 处，根据闭合电路欧姆定律：$E=I_{5} R_{\text {中 }}$ ，

甲

的分度值为 2 mA ，偏转了 33 格，故读作 66 mA ．此时，根据闭合电路欧姆定律 $E=I\left(R_{\text {中 }}+R+R_{\text {A }}\right)=$ $66 \times 10^{-3} \times(100+1+24) \mathrm{V}=8.25 \mathrm{~V} / \mathrm{N}$
13．（1）对原有空气，根据查理定律 $\frac{P_{0}}{T_{0}}=\frac{P_{1}}{T_{1}}$（2 分）
得 $P_{1}=3 P_{0}$（1 分）
此时水蒸气的分压强为 $6 P_{0}-P_{1}=3 P_{0}$（1 分）
（2）设罐体的体积为 V_{0} ，对混合气体分析。根据理想气体状态方程 $\frac{6 P_{\circ} \frac{3}{4} V_{0}}{T_{1}}=\frac{P_{0} V_{2}}{T_{2}}$（2 分） $V_{2}=\frac{9 T_{2}}{2 T_{1}} V_{0}=\frac{6 \times 400}{900} \times 3 \times 10^{-3} \mathrm{~m}^{3}=8 \times 10^{-3} \mathrm{~m}^{3}$（2 分） $\frac{m_{\text {蛙 }}}{m_{0}}=\frac{V_{0}}{V_{z}} \times 100 \%=50 \%$（2 分）
14．（1）因为 $T=\frac{2 \pi m}{q B_{0}}$ ，所以 $t_{0}=\frac{\pi m}{2 q B_{0}}=\frac{T}{4}$（1 分）
柆子在 B_{0} 中的轨迹为四分之一圆弧．由几何关系可得：$r_{1}=\frac{a}{2}$（ 1 分）又因为 $q v_{0} B=\frac{m v_{0}^{2}}{r_{1}}$
$r_{1}=\frac{m v_{0}}{q B}$（1 分）
解得：$v_{0}=\frac{q B a}{2 m}$（ 1 分）

（2）粒子在电场中做类平按运动，由类平抛运动的规律可得：
$\frac{a}{2}=v_{0} t$（1 分）
$\frac{a}{2}=\frac{1}{2} \frac{q E}{m} t=(1$ 分 $)$
解得：$E=\frac{4 m v_{0}^{2}}{q a}=\frac{q B^{2} a}{m}$（1 分）
（3）由类平抛运动规律可得：$v=\sqrt{5} v_{0}, \tan \theta=2$（1 分）
所以 $\cos \theta=\frac{\sqrt{5}}{5} \cdot \sin \theta=\frac{2 \sqrt{5}}{5}$（ 1 分）
粒子在園形磁场中运动满足 $q \sqrt{5} v_{0} 2 B_{0}=\frac{m\left(\sqrt{5} v_{0}\right)^{2}}{r_{2}}$（1 分）
半径 $r_{2}=\frac{\sqrt{5}}{4} a(1$ 分）
根据几何关系可得．磁场的半径和带点粒子在磁场中运动的圆的半径相等 $R=r_{2}=\frac{\sqrt{5}}{4} a$（1 分）
由几何关系可得，粒子在磁场中沿 y 轴方向运动的位移满足：$y=r_{2}$ 大陪 $\cos \theta$（1 分）
解得：$y=\frac{1}{4}(1+\sqrt{5}) a$ ，所以从 y 轴射出点的坐标为 $\left(0,-\frac{1}{4}(1+\sqrt{5}) a\right)$（ 1 分）
15．（1）根据水平方向动量守恒，最终滑块和木板水平方向速度相同：
$m v_{0}=(m+M) v(2$ 分 $)$
解得 $v=\frac{m}{m+M} v_{0}=3 \mathrm{~m} / \mathrm{s}$（1 分）

水平方向，对滑块：$-\mu F_{\mathrm{N}_{1} \Delta \mathrm{t}}=\boldsymbol{m} v_{1}-m v_{o}$（ 1 分）
对木板：$\mu F_{\mathrm{N} 1} \Delta \mathrm{t}=M V_{1}$（1 分）

联立可得：$v_{1}=v_{0}-\mu v_{00}(1+k)=8.6 \mathrm{~m} / \mathrm{s}$（1 分）
$V_{1}=\frac{m}{M^{\mu}} v_{y_{0}}(1+k)=1.6 \mathrm{~m} / \mathrm{s}$（1 分）
（3）第二次碰㨷后，水平方向对滑块：$-\mu F_{\mathrm{s} 2} \Delta t=m v_{2}-m v_{1}$（1 分）
对木板：$\mu F_{\mathrm{N} 2} \Delta \mathrm{t}=M\left(V_{2}-V_{1}\right)$（1 分）
竖直方向对滑块：$-F_{\mathrm{N} 2} \Delta \mathrm{t}=m k v_{\mathrm{y}}-m k^{2} v_{\mathrm{y} 0}$（1 分）
联立可得：$v_{2}=v_{0}-\mu v_{0}(1+k)-\mu v_{0}(1+k) k=4.76 \mathrm{~m} / \mathrm{s}$
$V_{:}=\frac{m}{M}\left[\mu v_{y_{0}}(1+k)+\mu v_{y 0}(1+k) k\right]=2.56 \mathrm{~m} / \mathrm{s}(1$ 分 $)$
同理可以推理得 $v_{3}=v_{0}-\mu v_{y_{0}}(1+k)-\mu v_{y_{0}}(1+k) k-\mu v_{y 0}(1+k) k^{2}=2.456 \mathrm{~m} / \mathrm{s}$
$V_{3}=\frac{m}{M}\left[\mu v_{y_{0}}(1+k)+\mu v_{y 0}(1+k) k+\mu v_{y 0}(1+k) k^{2}\right]=3.16 \mathrm{~m} / \mathrm{s}$（1 分）
此时 $v_{3}<V_{3}$ ，与题意不相符合，因此在第三次碰恋的过程中滑块和木板已经共速（1 分）
所以 $\Delta x=v_{0} \frac{v_{y 0}}{g}+\left(v_{1}-V_{1}\right) \frac{2 k v_{y 0}}{g}+\left(v_{2}-V_{z}\right) \frac{2 k^{2} v_{s p}}{g}=24.984 \mathrm{~m}$（1 分）

