
2023 届高三仿真模拟考试(二) 河北卷 物理 试题

注意事项:

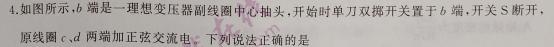
- 1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。
- 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷 上无效。
- 3.考试结束后,将本试卷和答题卡一并交回。

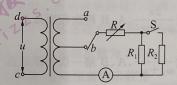
考试时间为75分钟,满分100分

- 一、单项选择题:本题共8小题,每小题4分,共32分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1.¹⁴C 发生放射性衰变为¹⁴N,半衰期约为 5 730 年。在某次考古研究中,测得考古样品中¹⁴C 的含量大约是现代鲜活生命体中¹⁴C 比例的四分之一。下列说法正确的是
 - A.14 C 衰变为14 N 的本质是1H→0n+0e
 - B.该古木生命活动结束的年代距今约 11 400 年
 - C.再过约 5 730 年,该样品中的14 C 将全部衰变殆尽
 - D.改变样品测量环境的温度和压强,可以改变14C的衰变快慢
 - 2.北京冬奥会于 2022 年 2 月 4 日开幕,在 2 月 8 日进行的自由式滑雪女子大跳台比赛中,中国选手谷爱凌获得了该项目历史上第一块金牌。如图所示为"大跳台"赛道的示意图,由助滑道、起跳台、着陆坡、停止区组成。下列说法正确的是

- A.助滑时运动员下蹲,同时双臂向后紧贴身体,以减小起跳时的速度
- B.运动员在助滑道加速下滑时处于超重状态
- C.运动员在着陆坡落地时,应该让滑雪板的前端先落地
- D.着陆时运动员控制身体屈膝下蹲,可以减小冲击力

仿真模拟考试(二) 河北卷 物理试题 第1页(共8页)


3.2022年3月23日,航天员王亚平、叶光富在中国空间站太空舱开设"天宫课堂",课堂中演示了"水油分离"实验。如图所示,用细绳系住装有水和油的瓶子,叶光富手持细绳的另一端,使瓶子在竖直平面内做圆周运动,下列说法正确的是


A.瓶子速度小于某一值就不能通过圆周的最高点

B.瓶子的线速度一定,绳子越长,油和水越容易分离

C. 航天员在某时刻松开绳子, 瓶子将做匀速直线运动

D.航天员可以用该装置在太空舱内演示瓶子做单摆运动

A.将可变电阻 R 调大,则 R_1 两端电压变大

B.闭合开关 S,则 R 两端电压变小

C. 当单刀双掷开关由 b 拨向 a 时, 副线圈电流的频率变小

D. 当单刀双掷开关由 b 拨向 a 时,原线圈的输入功率变大

5.一束单色光由空气射向厚度 $d=2\sqrt{3}$ cm 的平行玻璃砖,其入射角为 45° ,光路如图所示,光在前表面的入射点与后表面的出射点之间的水平距离 s=2 cm,假设所有的光线只在两水平界面发生折射与反射。下列说法正确的是

A.若增大入射角时,则会在前表面发生全反射

B.若增大入射角时,则会在后表面发生全反射

C.玻璃砖的折射率为√3

D.光在玻璃砖里传播的时间为 $\frac{4\sqrt{2}}{3}$ ×10⁻¹⁰ s

仿真模拟考试(二) 河北卷 物理试题 第 2 页(共 8 页)

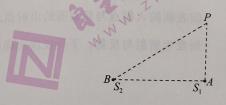
6.北京时间 2022 年 6 月 2 日 12 时 00 分,我国在西昌卫星发射中心使用长征二号丙运载火箭,成功将吉利星座 01 组卫星发射升空。如图所示,A 是位于赤道平面内、绕行方向与地球自转方向相同的近地卫星,B 是一颗地球同步卫星,此时 A 、B 连线与地心恰在同一直线上且相距最近。已知 A 的角速度为 ω_1 ,地球自转角速度为 ω_2 ,引力常量为G,下列说法正确的是

A.地球的密度为 $\frac{3\omega_2^2}{4G\pi}$

B.由图示时刻开始,至少经过 $\frac{2\pi}{\omega_1-\omega_2}$, A, B 再次相距最近

C. 由图示时刻开始,至少经过 $\frac{\pi}{\omega_1+\omega_2}$,A、B 第一次相距最远

D.A、B 与地心的连线在相同时间内扫过的面积相等


7.如图所示,在同一均匀介质中的水平面内有一直角 $\triangle ABP$,其中 AP=3 m, AB=4 m。波源 S_1 、 S_2 分别位于 A、B 两点处,振动并产生周期相同、沿竖直方向振动的两列横波。 t=0 时刻,波源 S_1 开始向上振动,产生的波仅沿直线 AP 传播, $t_1=4$ s 时,P 点第一次达到波峰;t=0 时刻,波源 S_2 开始向下振动,产生的波仅沿直线 BP 传播, $t_2=7$ s 时,距离 B 点 4 m 的 C 点 (图中未画出 C 点)第一次达到波峰。下列说法正确的是

A.横波的周期为2s

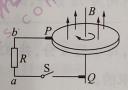
B.横波的波速 4 m/s

C.P 点是振动加强点

D.P 点始终处于波峰位置

8.如图所示,在 x 轴上的 A 、B 两位置各放一个电子(电量为-e),A 、B 间距离与 B 、O 间距离相等。在 y 轴上的 C 、D 两位置各放一个负离子(电荷量均为-q),电荷量 $q \le 5e$,数值上 q 是 e 的整数倍,BC 连线和 BD 连线与 x 轴的夹角 θ 始终相等。现固定 A 处电子,改变负离子的位置,调节夹角 θ ,使 B 处电子在原位置平衡,下列说法正确的是

A.夹角 θ 有 10 个可能值


B.夹角 θ 的值可能等于 60°

C. 若 $\theta = 30^{\circ}$,要使 B 电子仍在原位置平衡,则 A 电子要向左移

D.若 A 点负电荷变为-8e,其他条件不变,则 B 电子不可能平衡

仿真模拟考试(二) 河北卷 物理试题 第 3 页(共 8 页)

- 二、多项选择题:本题共 3 小题,每小题 6 分,共 18 分。在每小题给出的四个选项中,有两个或两个以上选项符合题目要求。全部选对的得 6 分,选对但不全的得 3 分,有选错的得 0 分。
- 9.如图为法拉第制作的世界上第一台发电机的模型原理图。半径为r 的铜圆盘安装在竖直的铜轴上,阻值为R 的电阻与两铜片P、Q 连接再分别与圆盘的边缘和铜轴接触,圆盘处于方向竖直向上的匀强磁场B 中,在外力的作用下,从上向下看,圆盘在水平面内绕轴以角速度 ω 顺时针方向匀速转动。已知圆盘和铜轴接入电路中的等效电阻为 βR (0 $<\beta<$ 1),不计导线的电阻,不计空气阻力和摩擦,开关 S 闭合。则下列说法正确的是

A.流过电阻 R 的电流方向由 a 到 b

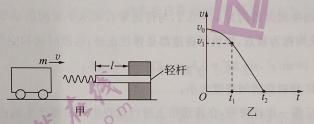
B.流过电阻 R 的电流大小为 $\frac{Br^2\omega}{2(1+\beta)R}$

C.电阻 R 两端的电压为 $\frac{Br^2\omega}{2}$

D.外力对转盘所做功的功率大小为 $\frac{B^2r^4\omega^2}{4(1+\beta)R}$

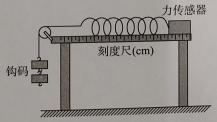
10.蹦床是一项具有挑战性的体育运动。如图所示,某时刻质量 m=60 kg 的运动员从离蹦床 A 点上方高度 $h_1=5.0 \text{ m}$ 的最高点 O 自由下落,接触蹦床 A 点后继续向下运动 $h_2=0.1 \text{ m}$ 到最低点 C,然后再反弹至离蹦床 A 点上方高度 $h_3=1.25 \text{ m}$ 。其中 B 点为人静止在蹦床上时的位置,人与蹦床接触时间 $\Delta t=1.0 \text{ s}$,忽略空气阻力作用,重力加速度 g 取 10 m/s^2 。下列说法正确的是

A.运动员即将与蹦床接触时的动量大小为 600 kg·m/s


B.运动员与蹦床接触过程中的动量变化大小为 300 kg·m/s

C.蹦床对人的平均作用力大小为 1 500 N

D.运动员从最高点下落到最低点的过程中,A 点处的动量最大

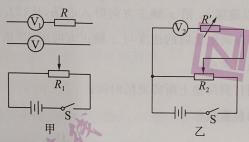

仿真模拟考试(二) 河北卷 物理试题 第 4 页(共 8 页)

11.如图甲所示为某缓冲装置模型,劲度系数为 k (足够大)的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间的滑动摩擦力大小为定值 f。轻杆向右移动不超过 l 时,装置可安全工作。一质量为 m 的小车以速度 v。撞击弹簧后,轻杆恰好向右移动 l,此过程中小车速度 v 随时间 t 变化的 v-t 图像如图乙所示。已知在 $0\sim t_1$ 时间内,图线为曲线,在 $t_1\sim t_2$ 时间内,图线为直线。已知装置安全工作时,轻杆与槽间的最大静摩擦力等于滑动摩擦力,不计小车与地面间的摩擦。下列说法正确的是

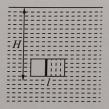
A.在 $0 \sim t_1$ 时间内,小车运动的位移大小为 $\frac{2f}{k}$ B.在 t_1 时刻,小车的动量大小为 $\sqrt{2mfl}$ C.在 $0 \sim t_2$ 时间内,因摩擦产生的热量为 fl D.在 $t_1 + t_2$ 时刻,小车恰好离开轻弹簧 三、非选择题: 本题共 5 小题,共 50 分。

12.(6分)物理课外兴趣小组准备测量实验室购买的某种弹簧的劲度系数。他们设计的实验装置如图所示,将毫米刻度尺固定在水平桌面边沿上,待测弹簧一端连接力传感器,另一端通过细绳和定滑轮悬挂钩码。实验过程如下:将钩码逐个悬挂上去,每增加一个钩码,待弹簧静止后记录下钩码的个数 n、弹簧左端对应的刻度尺示数 L, 和力传感器的读数 F, 数据记录如下表所示。实验过程中弹簧始终处于弹性限度内。

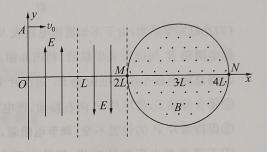
n	1	2	3	14	5	6
L_n / cm	16.08	20.06	24. 10	28. 14	32. 22	36. 18
F_n/N	2.00	4.00	6.00	8.00	10.00	12.00

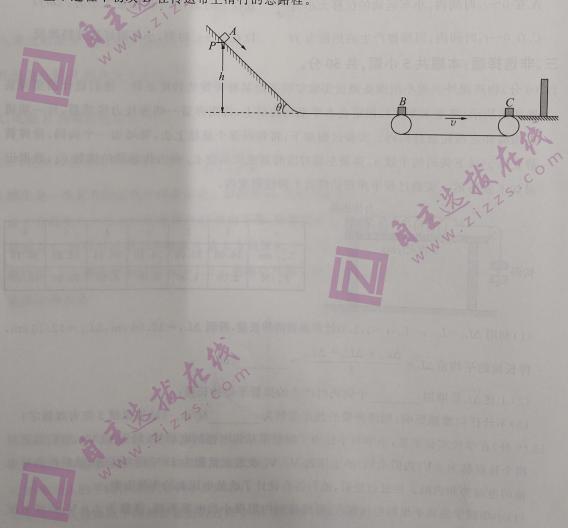

(1)利用 $\Delta L_i = L_{i+3} - L_i$ (i=1,2,3)计算弹簧的伸长量,得到 $\Delta L_1 = 12.06$ cm, $\Delta L_2 = 12.16$ cm,

伸长量的平均值
$$\frac{\Delta L}{\Delta L} = \frac{\Delta L_1 + \Delta L_2 + \Delta L_3}{3} =$$
____cm


- (2)上述 ΔL 是增加______个钩码时产生的弹簧平均伸长量;
- (3)不计任何摩擦影响,则该弹簧的劲度系数为____N/m。(结果保留 3 位有效数字)
- $13.(9\, \mathcal{O})$ 在学校实验室里,小华和小红为了测量某品牌电池的电动势(约为 $10\, \mathrm{V}$),他们需要将两个量程都为 $3\, \mathrm{V}$ (内阻未知)的电压表 $\mathrm{V}_1\,\mathrm{V}_2$ 改装成量程为 $15\, \mathrm{V}$ 的电压表,然后再测量电池的电动势和内阻。经过讨论后,他们各自设计了改装电压表的实验方案:
 - (1)小华同学先将手里的电压表 V₁直接接到内阻很小的电源两端,读数为 2.0 V;再将电压

仿真模拟考试(二) 河北卷 物理试题 第5页(共8页)


表 V_1 与阻值为 3 000 Ω 的电阻串联后,接到该电源两端,读数为 0.8 V_1 则电压表 V_1 的内阻为______ Ω ;要将电压表 V_1 改装成量程为 15 V 的电压表,需要串联一个定值电阻 R_1 则 R_2 的阻值为______ Ω 。再将改装后的电压表与一标准电压表 V 联接进行校对,请在甲图中补充完成校对的实验电路图。


- (2)小红同学认为,由于不知道该电压表 V_2 的内阻准确值,于是她将一个最大阻值为 9 999.9 Ω 的电阻箱 R'与电压表串联后,利用如图乙所示的电路进行改装,请完成③的填空:
- ①将总阻值较小滑动变阻器 R_2 的滑片 P 移至最左端,同时将电阻箱的阻值调为零;
- ②闭合开关 S,将滑片 P向右移动,使电压表的示数为 3 V;
- ③保持滑片 P 的位置不变,调节电阻箱,使电压表的示数为 V;
- ④不再改变电阻箱的阻值,保持电压表和电阻箱串联,撤去其他电路就得到改装后的电压表。
- (3)小红同学利用改装后的电压表接入电路测量电压时,其示数总是_____(选填"大于"等于"或"小于")真实值。
- 14.(8分)蛟龙号深潜器在执行某次实验任务时,外部携带一装有氧气的汽缸,汽缸底面积为S、长度为l、导热性良好,活塞与缸壁间无摩擦且与海水相通。汽缸在海面上开口向右,氧气恰好充满汽缸。现该深潜器下潜至深度为H的海水下, $H\gg_r(r)$ 为汽缸底部的半径),如图所示。已知海面大气压强为 p_o ,温度为 T_o ,海水的密度为 ρ ,忽略海水密度随深度的变化,重力加速度大小为g。
 - (1)若海水温度随深度增加而降低,深度为 H 的海水下温度为 T,求进入汽缸的海水长度;
 - (2) 若保持深度 H 不变且不考虑海水温度随深度的改变,压入压强为 p_0 的空气使汽缸内的海水全部排出,求压入空气的体积。

- 15.(11 分)在平面直角坐标系 $0 \le x < L$ 区域内有沿 y 轴正方向的匀强电场 $E, L \le x < 2L$ 区域内有沿 y 轴负方向的匀强电场 $E, 2L \le x < 4L$ 区域内有一圆筒,其轴线垂直于平面直角坐标系,圆心经过点(3L,0),半径为 L,圆筒内存在着垂直于坐标系平面向外的匀强磁场。筒壁上有两孔 M,N,在同一直径上,初始位置如图所示。一质量为 m、电荷量为 e 的电子,从 y 轴上的 A 点(0,L)以速度 v_0 沿 x 轴正方向射入电场,从(2L,0)处沿 x 轴正方向经孔 M 进入磁场区域,电子打在筒壁上时的速度与 x 轴正方向成 60° 角。不考虑电子的重力。求:
 - (1) 匀强电场的电场强度大小;
 - (2)电子从进入电场到打到筒壁上所需要的时间;
 - (3)电子打到筒壁上的位置坐标。

- 16.(16 分)如图所示,长为 L=2.0 m 的水平传送带以 v=2 m/s 速度匀速转动,紧靠传送带两端的水平面上分别静置物块 B 和 C , $m_B=m_C=1.0$ kg。在距传送带右端 s=0.5 m 的水平面上放置一竖直固定弹性挡板,物块与挡板碰撞后被原速率弹回。在传送带左端的水平面上固定一倾角 $\theta=37^\circ$ 的斜面体,斜面底端与水平面平滑连接。质量 $m_A=1.0$ kg 的小物块 A 在距离底端高度 h=1.35 m 的 P 点处由静止开始沿斜面下滑,经光滑水平面后与 B 发生弹性正碰,接着物块 B 滑上传送带。已知小物块 A 与斜面间动摩擦因数 $\mu=0.50$,物块 B 、C 与传送带间的动摩擦因数均为 $\mu_1=0.2$,与传送带右端水平面间的动摩因数均为 $\mu_2=0.02$, A 、B 、C 小物块均视为质点,物块间碰撞都是弹性正碰,碰撞时间和空气阻力均忽略不计,重力加速度 g 取 10 m/s² ,sin $37^\circ=0.6$, cos $37^\circ=0.8$ 。求:
 - (1)物块 A 与 B 相碰前瞬间速度大小;
 - (2)物块 B 与 C 第一次碰撞前,在传送带上滑行过程中因摩擦产生的内能;
 - (3)整个过程中物块 B 在传送带上滑行的总路程。

2023 届高三仿真模拟考试(二) 河北卷

物理参考答案及评分意见

- 1.B 【解析】 ¹⁴C 衰变为 ¹⁴N 的本质是 β 衰变,即 ¹₀ n → ¹₁ H + $_{-1}$ e,A 错误;由半衰期公式可得 $m = m_0 \left(\frac{1}{2}\right)^{\frac{t}{\tau}}$,考古样品中 ¹⁴C 的比例是鲜活生命体中 ¹⁴C 比例的四分之一,则 $t = 2 \times 5$ 730 年 = 11 460 年,B 正确;再过约 5 730 年,该样品中的 ¹⁴C 将变为原来的八分之一,C 错误;改变样品测量环境的温度和压强,不可以改变 ¹⁴C 的半衰期,因此不可以改变 ¹⁴C 的衰变快慢,D 错误。
- 2.D 【解析】助滑时运动员采用下蹲姿势,同时双臂向后紧贴身体,是为了减小阻力,增大起跳时的速度,A 错误;在助滑区,运动员加速度沿竖直方向的分加速度方向向下,处于失重状态,B 错误;如果前端先落地,由于惯性的作用,人板会以落地点为转动中心,产生旋转从而失去平衡倒地,应该让滑雪板的后端先落地,C 错误;着陆时运动员控制身体屈膝下蹲可以延长时间,根据动量定理可知,可以减少平均冲击力,D 正确。
- 3.C 【解析】瓶子所受万有引力全部用来提供围绕地球做圆周运动的向心力,瓶子在空间站中处于完全失重状态,瓶子在空间站内做圆周运动的向心力由绳子拉力提供,无论瓶子速度多大都能做完整的圆周运动,A 错误;根据 $F_n = m \frac{v^2}{R}$,瓶子的线速度一定,绳子越长,所需向心力越小,油和水越不容易分离,B 错误;航天员在某时刻松开绳子,以空间站为参考系,瓶子所受合力为零,将做匀速直线运动,C 正确;瓶子在空间站中处于完全失重状态,航天员不可以用该装置在太空舱内演示瓶子做单摆运动,D 错误。
- 4.D 【解析】因变压器副线圈电压不变,将可变电阻 R 调大,副线圈上总电阻变大,电流减小,则 R₁两端电压减小,A 错误;闭合开关 S,则副线圈上的总电阻减小,电流变大,R 两端电压变大,B 错误;变压器不改变交流电的频率,则当单刀双掷开关由 b 拨向 a 时,副线圈电流的频率不变,C 错误;当单刀双掷开关由 b 拨向 a 时,副线圈的匝数增多,则电压变大,消耗的功率变大,则原线圈的输入功率也变大,D 正确。
- 5.D **【解析】**因为全反射必须是从光密介质射向光疏介质时才有可能发生,所以即使增大入射角时,光也不会在玻璃砖前表面发生全反射;光在玻璃砖与空气界面发生全反射的临界角的正弦 $\sin C = \frac{1}{n}$,光在后表面的入射角的正弦 $\sin i' = \sin r = \frac{\sin i}{n} < \frac{1}{n}$,所以 i' < C,即使增大入射角,光在后表面的入射角也不可能达到全反射临界角,所以不可能发生全反射,A、B 错误;光在玻璃砖的前表面发生折射,入射角 $i = 45^\circ$,折射角的正弦 $\sin r = \frac{s}{\sqrt{s^2 + d^2}} = \frac{1}{2}$,由折射定律可得 $n = \frac{\sin i}{\sin r} = \sqrt{2}$,C 错误;光在玻璃砖里传播的距离 $l = \sqrt{s^2 + d^2}$,传播的时间 $t = \frac{l}{v} = \frac{\sqrt{s^2 + d^2}}{\frac{C}{3}} = \frac{4\sqrt{2}}{3} \times 10^{-10} \text{ s}$,D 正确。
- n 6.B 【解析】近地卫星 A 绕地球表面飞行,万有引力提供向心力 $\frac{GMm}{R^2}=m\omega_1^2R$,根据密度 $\rho=\frac{M}{\frac{4}{3}\pi R^3}$,解得 $\rho=\frac{3\omega_1^2}{4G\pi}$,A 错误;同步卫星

B 的角速度等于地球自转角速度 ω_2 ,设至少经过时间t,他们再一次相距最近,则 $\omega_1 t - \omega_2 t = 2\pi$,解得 $t = \frac{2\pi}{\omega_1 - \omega_2}$,B 正确;同理,设至少经过时间t,他们第一次相距最远,则 $\omega_1 t - \omega_2 t = \pi$,解得 $t = \frac{\pi}{\omega_1 - \omega_2}$,C 错误;根据开普勒第二定律可知,对于同一卫星来说,它与地心的连线在相同时间内扫过的面积相等,D 错误。

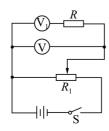
- 7.C 【解析】两列波在同一均匀介质中传播,它们的波速相同,设大小为 v,设波从波源 S_1 传到 P 点时间为 t_3 ,由于波源 S_1 开始向上振动,经过时间 t_1 = 4 s,P 点第一次达到波峰,则应满足 t_1 = t_3 + $\frac{T}{4}$,且 t_3 = $\frac{AP}{v}$,即 t_1 = $\frac{AP}{v}$ + $\frac{T}{4}$,同样,由于波源 S_2 开始向下振动,经过时间 t_2 = 7 s,C 点第一次达到波峰,则应满足 t_2 = $\frac{BC}{v}$ + $\frac{3T}{4}$,解得 T = 4 s,v = 1 m/s,A、B 错误;B、P 间距离 BP = $\sqrt{AP^2 + AB^2}$ = 5 m,由于两列横波周期相同,所以波长相同,设为 λ ,则 $\lambda = vT = 4$ m,波源 S_1 、 S_2 到 P 点的路程差 $\Delta r = BP AP = 2$ m = $\frac{\lambda}{2}$,由于 t = 0 时刻两波源起振方向相反,所以 P 点是振动加强点,但是 P 点的位移随时间周期性变化,C 正确,D 错误。
- 8.B 【解析】设 AB=BO=r,CD 两处的电荷带电量为 q=ne,其中 n=1、2、3、4、5,当 B 点的电子平衡时,则 k $\frac{e^2}{r^2}=2k$ $\frac{e\times ne}{\left(\frac{r}{\cos\theta}\right)^2}\times$

 $\cos \theta$,即 $\cos^3 \theta = \frac{1}{2n}$,因 n 可取 5 个值,且 θ 角小于 90°,可知夹角 θ 有 5 个可能值,当 n=4 时, $\theta=60$ °,A 错误,B 正确;若 $\theta=30$ °,CD0

两处的电荷对 B 处电子的作用力为 F=2k $\frac{e\times ne}{\left(\frac{r}{\cos 30^{\circ}}\right)^{2}}\cos 30^{\circ}=\frac{3\sqrt{3}\,nke^{2}}{4r^{2}}=\frac{3\sqrt{3}\,n}{4}F_{AB}>F_{AB}$,则要使 B 电子仍在原位置平衡,则 A

电子要向右移靠近 B , C 错误; 若 A 点负电荷变为 -8e , 其他条件不变,则要 B 电子仍平衡时需满足 k $\frac{8e^2}{r^2} = 2k$ $\frac{e \times ne}{\left(\frac{r}{\cos\theta}\right)^2}\cos\theta$, 即

 $\cos^3 \theta = \frac{4}{n}$,则只有当 n = 4、5 时表达式成立,即 B 电子仍能平衡,D 错误。


- 9.ABD 【解析】铜盘切割磁感线产生感应电流,根据右手定则可知,电流从 P 点流向 Q 点,Q 点相当于电源的正极,电势高,因此流过电阻 R 的电流方向由 a 到 b ,A 正确;圆盘产生的感应电动势 E=Brv=Br $\frac{0+r\omega}{2}=\frac{1}{2}Br^2\omega$,根据闭合电路欧姆定律有 $I=\frac{E}{R+\beta R}=\frac{Br^2\omega}{2(1+\beta)R}$,B 正确;电阻 R 两端的电压 $U=IR=\frac{ER}{R+\beta R}=\frac{Br^2\omega}{2(1+\beta)}$,C 错误;圆盘匀速转动时,外力对圆盘做功的功率等于整个电路总的热功率, $P=I^2(1+\beta)R=\frac{B^2r^4\omega^2}{4(1+\beta)R}$,D 正确。
- 10.AC 【解析】运动员从最高点 O 下落到接触蹦床 A 点过程中,做自由落体运动,即将与蹦床接触时的速度大小为 $v_1 = \sqrt{2gh_1} = 10 \text{ m/s}$,根据动量定义有 $p = mv_1 = 600 \text{ kg} \cdot \text{m/s}$,A 正确;反弹至离蹦床 A 点上方高度为 $h_3 = 1$. 25 m,运动员与蹦床分离时的速度大小为 $v_2 = \sqrt{2gh_3} = 5 \text{ m/s}$,接触过程中的动量变化大小 $\Delta p = mv_2 (-mv_1) = 900 \text{ kg} \cdot \text{m/s}$,B 错误;根据动量定理有 $(F mg)\Delta t = \Delta p$,蹦床对运动员的平均作用力大小为 F = 1500 N,C 正确;从 O 点运动到 C 点的过程中,运动员先向下加速后向下减速运动,当下落至重力与蹦床支持力等大时速度最大,即在 B 点速度最大,由动量定义 p = mv 可知,运动员下落至 B 点时动量最大,D 错误。
- 11.BC 【解析】在 $0 \sim t_1$ 时间内,小车压缩弹簧轻杆保持静止,在 t_1 时刻,弹力等于最大静摩擦力,则在 $0 \sim t_1$ 时间内,小车运动的位移大小等于弹簧的形变量,即 $x = \frac{f}{k}$,A 错误;在 t_1 时刻后,小车与轻杆一起做匀减速运动直到速度为 0,移动的位移大小为 l,由动能定理有一 $fl = -\frac{1}{2}mv_1^2$,解得 $v_1 = \sqrt{\frac{2fl}{m}}$,所以在 t_1 时刻,小车的动量大小为 $p = mv_1 = \sqrt{2mfl}$,B 正确;在 $0 \sim t_1$ 时间内,小车做加速度增大的减速运动,在 $t_1 \sim t_2$ 时间内,小车与轻杆一起做匀减速运动,速度减为零后弹簧反弹,小车做加速度减小的加速运动,则从小车反向加速到恰好离开轻弹簧时所用的时间比 t_1 大,所以在 $t_1 + t_2$ 时刻,小车还未离开轻弹簧,D 错误;在 $0 \sim t_2$ 时间内,因摩擦产生的热量 Q = fl,C 正确。
- 12.(1)12.10(2分) (2)3(2分) (3)49.6(2分)

【解析】(1)弹簧的伸长量 $\Delta L_3 = L_6 - L_3 = 12.08 \text{ cm}$,可知伸长量的平均值 $\Delta \bar{L} = \frac{\Delta L_3 + \Delta L_2 + \Delta L_1}{3} = 12.10 \text{ cm}$;

(2)因三个 ΔL 是相差 3 个钩码的伸长量之差,则所求平均值为增加 3 个钩码时产生的弹簧平均伸长量;

- (3)根据钩码的平衡条件有 $F_3 = k \Delta \overline{L}$,解得 $k = \frac{F_3}{\Delta \overline{L}} = \frac{6.00}{0.121} \text{N/m} \approx 49.6 \text{ N/m}$ 。
- 13.(1)2000(1分) 8000(2分) 见解析(2分) (2)③0.6(2分) (3)小于(2分)

【解析】(1)小华先将电压表 V_1 直接接到内阻很小的电源两端,读数为 2.0 V,可知电源电动势 E=2 V;再将电压表 V_1 与阻值为 $3\,000\,\Omega$ 的电阻串联后,接到该电源两端,读数为 0.8 V,则 0.8 $V=\frac{ER_{\rm V}}{R+R_{\rm V}}$,解得 V_1 的内阻为 $R_{\rm V}=2\,000\,\Omega$;要改装成量程为 15 V 的电压表,需要将电压表 V_1 串联合适的电阻 R,根据串联电路规律有 $\frac{3\,V}{2\,000\,\Omega}=\frac{(15-3)\,V}{R}$,解得 $R=8\,000\,\Omega$;设计校对的实验电路,如图所示。

仿真模拟考试(二) 河北卷 物理答案 第 2 页(共 4 页)

- (2)③由干滑动变阻器 R。的阻值较小,可以认为接入电阻箱后,分压仍为 3 V。要想将电压表改装成量程为 15 V 的电压表,小红 提出方案中的电阻箱两端电压应该是电压表电压的 4 倍, 所以只需调节电阻箱, 使电压表的示数变为 0.6 V 即可。
- (3)由于电阻箱与电压表串联,总电阻大于电压表的电阻,所以分压大于 3 V,电压表读数 0.6 V 时,电阻箱两端的电压大于 2.4 V,

即电压表 V_2 的分压小于改装后电压表电压的 $\frac{1}{5}$,用改装后的电压表接入电路测量电压时,示数总是小于真实值。

$$14.(1)l = \frac{p_0 lT}{(p_0 + \rho gH)T_0} \quad (2)\frac{\rho gHSl}{p_0}$$

【解析】(1)设汽缸在海面上时和放入海水深度为 H 后缸内气体的体积分别为 V_0 和 V_1 ,深度为 H 处缸内气体的压强为 ρ_1 ,由理想 气体状态方程和已知条件有

$$\frac{p_0 V_0}{T_0} = \frac{p_1 V_1}{T} (1 \%)$$

$$V_0 = lS(1 分)$$

$$V_1 = (l-d)S(1 分)$$

$$p_1 = p_0 + \rho g H(1 \, \mathcal{G})$$

解得
$$d = l - \frac{p_0 lT}{(p_0 + \rho gH)T_0} (1 分)$$

(2)若保持深度 H 不变且不考虑海水温度随深度的改变,设海水全部排出后汽缸内气体的压强为 p_2 ,此时汽缸内气体的体积为 V_{0} ,这些气体在其压强为 p_{0} 时的体积为 V_{3} ,由玻意耳定律有 $p_{2}V_{0}=p_{0}V_{3}(1$ 分)

其中
$$p_2 = p_0 + \rho g H(1 分)$$

设需压入筒内气体体积为V,依题意 $V=V_3-V_0$

联立解得
$$V = \frac{\rho g H S l}{\rho_0} (1 \, \hat{J})$$

15.(1)
$$\frac{mv_0^2}{eL}$$
 (2) $\frac{2L}{v_0} + \frac{\sqrt{3}\pi L}{3v_0}$ (3) $\left(\frac{7}{2}L, \frac{\sqrt{3}}{2}L\right)$

【解析】(1)电子在电场中做类平抛运动,水平方向上有 $2L = v_0 t_1 (1 \, f)$

电子经过两个电场后,竖直分速度为零,则有 $L=2\times\frac{1}{2}\cdot\frac{Ee}{m}\left(\frac{L}{v_0}\right)^2$ (2分)

解得
$$E = \frac{mv_0^2}{eI} (1 分)$$

(2)电子在电场中运动的时间
$$t_1 = \frac{2L}{v_0}(1 \text{ 分})$$

在磁场中,运动的周期
$$T = \frac{2\pi R}{v_0} = \frac{2\pi L \tan 60^\circ}{v_0} = \frac{2\sqrt{3}\pi L}{v_0} (1 \, \text{分})$$
 在磁场中运动的时间 $t_2 = \frac{60^\circ}{360^\circ} T = \frac{\sqrt{3}\pi L}{3v_0} (1 \, \text{分})$

在磁场中运动的时间
$$t_2 = \frac{60^{\circ}}{360^{\circ}} T = \frac{\sqrt{3} \pi L}{3v_0} (1 \text{ 分})$$

电子从进入电场到打到筒壁上所需要的总时间
$$t=t_1+t_2=\frac{2L}{v_0}+\frac{\sqrt{3}\pi L}{3v_0}$$
 (1分)

(3)电子在磁场中的横坐标为
$$x = 3L + L\cos 60^{\circ} = \frac{7}{2}L(1 \text{ 分})$$

纵坐标为
$$y = L \sin 60^{\circ} = \frac{\sqrt{3}}{2} L(1 \text{ 分})$$

电子打到筒壁上的位置坐标为
$$\left(\frac{7}{2}L,\frac{\sqrt{3}}{2}L\right)$$
(1分)

【解析】(1)滑块 A 在下滑到底端的过程中,由动能定理得

$$(m_A g \sin \theta - \mu m_A g \cos \theta) \frac{h}{\sin \theta} = \frac{1}{2} m_A v_A^2 (1 \%)$$

NNN. 1112 S. COM

代入数据可得 $v_A = 3 \text{ m/s}(1 \text{ 分})$

(2)A、B 两物块发生弹性碰撞,设碰后 A 的速度大小为 v_{A1} , B 的速度大小为 v_{B} , 有

$$m_A v_A = m_A v_{A1} + m_B v_B (1 \text{ } \%)$$

$$\frac{1}{2}m_{A}v_{A}^{2} = \frac{1}{2}m_{A}v_{A1}^{2} + \frac{1}{2}m_{B}v_{B}^{2}(1 \%)$$

代入数据得 $v_{A1} = 0$, $v_B = 3$ m/s(1分)

物块 B 滑上传送带后,由于 B 的速度大于传送带速度,物块 B 做匀减速运动,对物块 B,

 $\mu_1 m_B g = m_B a_B$

解得 $a_B = \mu_1 g = 2 \text{ m/s}^2 (1 分)$

物块 B 经时间 t_1 ,与传送带速度相等,设物块 B 的位移为 x_1 ,则有

$$t_1 = \frac{v_B - v}{a_B} = 0.5 \text{ s}$$

$$x_1 = \frac{v_B + v}{2} t_1 = 1.25 \text{ m}$$

由于 $x_1 < L$,物块B与传送带速度相等后一起与传送带匀速运动。

则物块 B 与传送带摩擦而产生的热量 $Q = \mu_1 m_B g(x_1 - s_1)(1 分)$

代入数据得 Q=0.5 J(1 分)

(3)物块 B 与物块 C 在传送带右端发生弹性正碰,取向右为正方向,有

$$m_B v = m_B v_{B1} + m_C v_{C1} (1 / 2)$$

$$\frac{1}{2}m_Bv^2 = \frac{1}{2}m_Bv_{B1}^2 + \frac{1}{2}m_Cv_{C1}^2(1 \%)$$

代入数据得 $v_{B1} = 0$, $v_{C1} = 2$ m/s(1分)

由此可知,每次 B 与 C 相碰,速度都发生交换。

对物块 C,设来回运动了 n 次,由动能定理可知 $-\mu_2 m_{C} g \times 2n s = 0 - \frac{1}{2} m_{C} v_{C1}^2$

代入数据得 n=10(1 分)

物块C第k次返回至传送带左端时速度平方大小为 v_k^2 ,由运动学公式得

$$v_k^2 = v_{C1}^2 - 2\mu_2 g \times 2ks = 4 - 0.4k \text{ (m}^2/\text{s}^2\text{)}$$
(其中 $k = 1, 2, \dots, 10$)(1分)

物块 B 获得速度后在传送带上先向左匀减速后向右匀加速,回到传送带右端时速度大小不变,物块 C 第 k 次在传送带上来回一次运动的路程

$$x_k = \frac{v_k^2}{2\mu_1 g} \times 2 = 2 - 0.2k \text{ (m)}$$
 (其中 $k = 1, 2, \dots, 10$) (1分)

所以整个过程物块 B 在传送带上滑行的总路程 $x=L+(x_1+x_2+\cdots\cdots+x_{10})$

代入数据得 x=11 m(1 分)

