2023～2024 学年第一学期高三年级期末学业诊断
 物理参考答案及评分建议

一，单项选择题：本题包含 8 小题，每小题 4 分，共 32 分。

题号	1	2	3	4	5	6	7	8
选项	B	B	B	B	C	B	B	D

二，多项选择题：本题包含 4 小题，每小题 4 分，共 16 分。

题号	9	10	11	12
选项	AC	BD	AB	CD

三，实验题：共16分。

（3）

四，计算题：共 36 分。

15．（8 分）
（1）物块 P 第一次在传送带上向右运动的最远点为 D 点
$m g h-\mu_{1} m g \cos 30^{\circ} \cdot \frac{h}{\sin 30^{\circ}}-\mu_{2} m g x_{m}=0-0$
$x_{m}=2 \mathrm{~m}$
$\mathbf{x}_{\mathrm{m}}<\mathbf{L}_{\mathrm{BC}}$
（2）物块 P 从 D 点运动到 B 点
$\mu_{2} m g x_{m}=\frac{1}{2} m v_{B}^{2}-0$
$v_{B}=2 \sqrt{5} \mathrm{~m} / \mathrm{s}<6 \mathrm{~m} / \mathrm{s}$

物块 \boldsymbol{P} 从 \boldsymbol{B} 点运动到斜面最高点
$-m g h_{m}-m g \cos 30^{\circ} \cdot \frac{h_{m}}{\sin 30^{\circ}}=\frac{1}{2} m v_{B}^{2}$
$\boldsymbol{h}_{\boldsymbol{m}}=\frac{2}{3} \mathrm{~m}$

16．（8 分）

（1）粒子在磁场中做圆周运动的半径为 x
由几何关系 得 $r \tan \frac{\theta}{2}=R$ ．．．（1 分）
$q \nu_{0} B=m \frac{v_{0}^{2}}{r}$.
$B=\frac{\sqrt{3} m v_{0}}{3 q R}$
粒子从 O 到 Q 做类平抛运动，运动时间为 t_{2}
$2 L=v_{0} t_{2}$.
$t_{2}=\frac{2 L}{v_{0}}$
$L=\frac{1}{2} \cdot \frac{q E}{m} \cdot t_{2}{ }^{2}$
$E=\frac{m v_{0}^{2}}{2 q L}$
$\frac{E}{B}=\frac{\sqrt{3} R}{2 L} v_{0}$.
（2）粒子在磁场中做匀速圆周运动的周期为 T
$\nu_{0}=\frac{2 \pi r}{T}$.
粒子在磁场中运动时间为 t_{1}
$t_{1}=\frac{\theta}{2 \pi} T$
$t_{1}=\frac{\sqrt{3} \pi R}{3 v_{0}}$
粒子从 P 运动 Q 的时间为 $t=t_{1}+t_{2}=\frac{6 L+\sqrt{3} \pi R}{3 v_{0}}$

17．（10 分）

（1）P 物块下摆

$$
m g L=\frac{1}{2} m v_{1}{ }^{2}-0 \cdots \cdots \cdots \cdots \cdots
$$

P 物块上摆
$-\boldsymbol{m g} \frac{1}{4} L=0-\frac{1}{2} m v_{2}{ }^{2}$
以右为正方向
$v_{1}=\sqrt{2 g L} \quad v_{2}=-\frac{\sqrt{2 g L}}{2}$
$\boldsymbol{m} \boldsymbol{v}_{1}=\boldsymbol{m} v_{2}+3 \boldsymbol{m} v_{3} \cdots \cdots \cdots \cdots \cdots \cdots$
$\frac{1}{2} m v_{1}{ }^{2}=\frac{1}{2} m v_{2}{ }^{2}+\frac{1}{2} 3 m v_{3}{ }^{2}$
等式成立， \boldsymbol{P} 与 \boldsymbol{Q} 碰撞为弹性碰撞
（2）Q 物块从 B 到 C
$q E L-3 m g L=\frac{1}{2} 3 m v_{c}{ }^{2}-\frac{1}{2} 3 m v_{3}{ }^{2}$
$\nu_{c}=v_{3}=\frac{\sqrt{2 g L}}{2} \quad$ 方向向上
物块在从 C 点飞出后水平方向做匀加速直线运动，坚直方向做坚直上抛运动
$a_{x}=\frac{q E}{3 m}=g, \quad a_{y}=g$

在坚直方向上，以下为正
$v_{D}{ }^{2}-v_{C}{ }^{2}=2 a_{y} L$
$v_{D}=\frac{\sqrt{10 g L}}{2} \quad v_{C}=-\frac{\sqrt{2 g L}}{2}$
$t=\frac{v_{D}-v_{C}}{a_{y}}$
在水平方向上，以右为正
$x=\frac{1}{2} a_{x} t^{2}=\frac{3+\sqrt{5}}{2} L$
$x_{\text {点 }}=x+L=\frac{5+\sqrt{5}}{2} L$

18．（10 分）
（1）撤去外力瞬间，甲棒的速度为 v ，此时回路的电流为
$I=\frac{B L v}{2 R}$
甲，乙受到的安培力大小相同，都为
$F_{A}=B I L=\frac{B^{2} L^{2} v}{2 R}$.
$F=m a$

$$
a_{\text {甲 }}=\frac{B^{2} L^{2} v}{4 m R}, \quad a_{\text {乙 }}=\frac{B^{2} L^{2} v}{2 m R} .
$$

（2）在 t 时间内，甲，乙两棒的电流相同，流过的甲乙的电荷量也相同
甲棒 $F t-B L \bar{I} t=2 m v$
$q=\bar{I} t$
$q=\frac{F t-2 m v}{B L}$
（3）撤去外力 F 后，甲做加速度减小的减速运动，乙棒做加速度减小的加速运
动，最后两棒速度相等，末速度为 v^{\prime} ，甲乙组成系统动量守恒，以右为正
$2 m v=3 m v^{\prime}$
$Q=\frac{1}{2} 2 m v^{2}-\frac{1}{2} \times 3 m v^{\prime 2}$
$Q=\frac{1}{3} m v_{0}^{2}$
$\frac{Q_{\text {甲 }}}{\mathrm{Q}}=\frac{1}{2}$
$\mathrm{Q}_{\text {甲 }}=\frac{1}{6} m v_{0}^{2}$
在甲乙两棒达到共速之前，设两棒的速度分别是 $v_{\text {甲和 }} v_{z}$ ，
乙棒 $\frac{B^{2} L^{2} \sum\left(v_{\text {甲 }}-v_{\mathrm{Z}}\right)}{2 R} \Delta t=m v^{\prime}-0$
两棒的位移差 $\Delta x=\sum\left(v_{\text {甲 }}-v_{乙}\right) \Delta t$

$$
\begin{equation*}
\Delta x=\frac{4 m v R}{3 B^{2} L^{2}} \cdot \cdot \tag{1分}
\end{equation*}
$$

