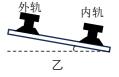
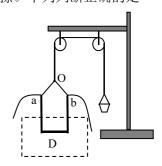

泉州市 2024 届高中毕业班质量监测(二)


2024.01

高三物理

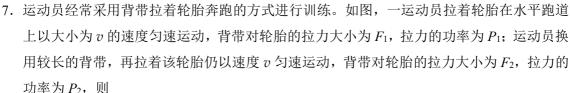

- 一、单项选择题:本题共4小题,每小题4分,共16分。在每小题给出的四个选项中,只有 一项是符合题目要求的。
- 1. 唐代诗人丁仙芝的诗句"更闻枫叶下,淅沥度秋声",通过枫叶掉落的淅沥声,带来了秋 天的讯息。如图为枫叶在秋风中下落的景色, 若其中一片枫叶从高度 为 6m 的树枝上由静止飘落, 经 3s 落到水平地面上, 取重力加速度 大小为 10m/s²。则该枫叶
 - A. 下落过程做自由落体运动
 - B. 落地时速度大小一定为 30m/s
 - C. 在竖直方向上运动的平均速度大小为 2m/s
 - D. 在下落过程中机械能守恒
- 2. 2023 年 9 月 28 日中国首条时速 350 公里跨海高铁——福厦高铁正式开通运营,福州至厦
 - 门两地间形成"一小时生活圈"。如图 甲,一满载旅客的复兴号列车以大小为 v 的速度通过斜面内的一段圆弧形铁轨 时, 车轮对铁轨恰好都没有侧向挤压。 图乙为该段铁轨内、外轨道的截面图。

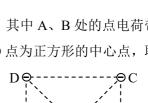
- A. 列车受到重力、轨道的支持力和向心力
- B. 若列车以大于v的速度通过该圆弧轨道,车轮将侧向挤压外轨
- C. 若列车空载时仍以v的速度通过该圆弧轨道,车轮将侧向挤压内轨
- D. 若列车以不同的速度通过该圆弧轨道,列车对轨道的压力大小不变
- 3. 图示装置可测量磁感应强度,"山"形金属框 D 用绝缘轻绳跨过定滑轮与小桶连接,悬挂在 竖直平面内,底边水平且长为L,两侧边竖直。D的下部分所在的虚线框内存在方向垂直 纸面的匀强磁场。让大小为I的电流从a端流入D,往小桶内加入质量为 m_1 的细沙时,系 统处于静止状态:若电流大小保持不变,方向改为由b端流入,往小桶内再加入质量为 m_2 的细沙时,系统又重新平衡。重力加速度大小为g,不计一切摩擦。下列判断正确的是
 - A. 磁感应强度方向垂直纸面向里,大小为 $\frac{m_2g}{2IL}$
 - B. 磁感应强度方向垂直纸面向里,大小为 $\frac{(m_1+m_2)g}{2IL}$
 - C. 磁感应强度方向垂直纸面向外,大小为 $\frac{2m_2g}{r}$
 - D. 磁感应强度方向垂直纸面向外,大小为 $\frac{(m_1+m_2)g}{1}$

4. 为顺利完成月球背面的"嫦娥六号"探测器与地球间的通信,我国新研制的"鹊桥二号" 中继通信卫星计划 2024 年上半年发射,并定位在地月拉格朗日 L,点,位于拉格朗日点上 的卫星可以在几乎不消耗燃料的情况下与月球同步绕地球做匀速圆周运动。已知地、月中 心间的距离约为 Lo 点与月球中心距离的 6 倍,如图所示。则地球与月球质量的比值约为

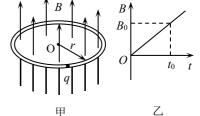
B. 49

C. 83


D. 216


- 二、双项选择题: 本题共 4 小题,每小题 6 分,共 24 分。每小题有两项符合题目要求,全部 选对的得6分,选对但不全的得3分,有选错的得0分。
- 5. 图示为某一种减震垫,上面布满了圆柱状薄膜气泡,每个气泡内均充满一定质量的理想气 体。当平板状物品平放在气泡上时,气泡被压缩。 假设在压缩过程中,气泡内气体温度保 持不变。下列说法正确的是
 - A. 压缩后气泡内气体的压强变大 xx
 - B. 压缩过程气泡内气体对外做正功
 - C. 压缩过程气泡内气体吸收热量
 - D. 压缩过程气泡内气体的内能不变

- A. O 点的电势为零
- B. O 点的场强为零
- C. M、N 两点的电势相同
- D. M、N 两点的场强相同


- A. F₂一定大于 F₁
- B. F_2 可能等于 F_1
- $C. P_2$ 一定大于 P_1
- D. P_2 可能等于 P_1

物品

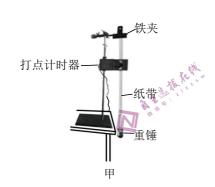
圆管内产生场强大小处处相等且电场线闭合的涡旋电场。管中有一质量为 *m*、电荷量大小为 *q* 的带负电小球从静止开始在管内做圆周运动。下列说法正确的是

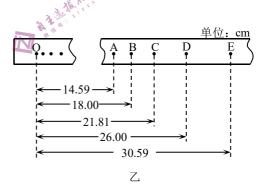
- A. 从上往下看小球沿顺时针方向运动
- B. 管内涡旋电场的场强大小为 $\frac{B_0r}{2t_0}$
- C. 小球第 2 次回到出发点时的速度大小为 $2r\sqrt{\frac{\pi q B_0}{mt_0}}$
- D. 小球先后相邻两次回到出发点的过程中涡旋电场对小球的冲量增大
- 三、非选择题: 共 60 分, 其中 9~11 题为填空题, 12、13 题为实验题, 14~16 为计算题。 考生根据要求作答。

9. (3分)

2023 年 8 月 25 日,"中国环流三号" 托卡马克装置首次实现 100 万安培等离子体电流下的高约束模式运行,是我国核能开发进程中的重要里程碑。其中的核反应方程之一为 ${}_{2}^{2}$ He+ ${}_{1}^{2}$ He+ ${}_{3}^{2}$ He+ ${}_{4}^{2}$ He+ ${}_{3}^{2}$ He+ ${}_{4}^{2}$ He+ ${}_{3}^{2}$ He+ ${}_{4}^{2}$ He+ ${}_{3}^{2}$ He+ ${}_{4}^{2}$ He+ ${}_{5}^{2}$ He+ ${}_{5$

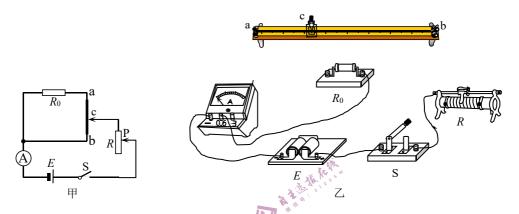
11. (3分)


如图甲所示装置可以用来检查精密光学平面的平整程度。当单色光 a 垂直入射后,从上往下看到的条纹如图乙所示;当单色光 b 垂直入射后,从上往下看到的条纹如图丙所示。由此可知该检测方法是利用光的______(选填"干涉"或"衍射")原理,a 光的波长_____(选填"大于"或"小于")b 光的波长;若抽去一张纸片,观察到的条纹将变_____(选填"疏"或"密")。



12. (5分)

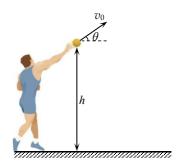
某同学用如图甲所示的装置做"验证机械能守恒定律"实验,所用计时器为电火花打点 计时器,重锤质量为500g,部分实验步骤如下:


- A. 将打点计时器竖直固定在铁架台上如图甲所示的位置;
- B. 先接通电源, 后释放重锤;
- C. 更换纸带, 再重复几次, 选择合适的纸带进行测量分析;
- (1) 上述实验步骤中不合理的步骤为 (选填序号字母);

13. (7分)

某兴趣小组做"测定金属丝的电阻率"实验,提供的器材有:电源、开关、导线、米尺、螺旋测微器、滑动变阻器、定值电阻、电流表等。由于没有电压表,该小组设计了如图甲所示的电路进行测量,其中 ab 为粗细均匀的待测金属丝, c 为可移动的金属线夹。

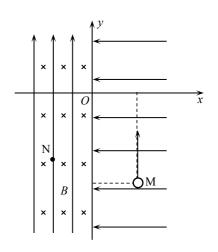
- (1) 请根据图甲电路,在图乙中用笔画线代替导线,将实物电路补充完整;
- (2) 用图丙所示的螺旋测微器测量金属丝直径 *D* 时,先将金属丝轻轻地夹在测砧与测微螺杆之间,再旋动______(选填 "A" "B" 或 "C") 部件,直到听见"喀喀"的声音后停止旋动。此时螺旋测微器的示数如图丁所示,其读数 *D*= mm;


- (3) 用米尺测出金属丝接入电路的总长度为L:

14. (11分)

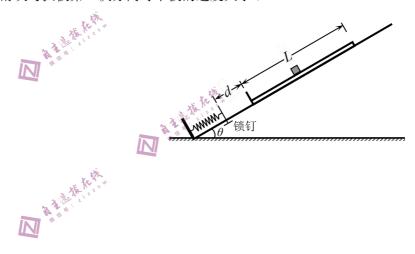
在 2023 年杭州亚运会女子铅球决赛中,我国运动员巩立姣以 19.58m 的成绩成功卫冕。运动员为了寻求最佳效果,训练时会尝试不同质量和不同夹角的抛球感觉。如图,在某次训练中运动员将质量 m=6kg 的铅球斜向上抛出,铅球离开手的瞬间速度大小 v_0 =10m/s,方向与水平夹角 θ =37°,铅球离开手时离水平地面的高度 h=1.8m。取重力加速度 g=10m/s²,sin37°=0.6,cos37°=0.8,不计空气阻力。求铅球:

- (1) 离开手瞬间的水平分速度大小 v_{0x} 和竖直分速度大小 v_{0y} ;
- (2) 上升到最高点的时间 t 和离地面的最大高度 H;
- (3) 落地前瞬间的动能 E_k 。



15. (12分)

如图,在直角坐标系 xOy 中,y 轴竖直,左侧存在一个垂直纸面向里的匀强磁场和沿 y 轴正方向的匀强电场;右侧存在沿 x 轴负方向的匀强电场,y 轴左侧场强大小为右侧的 2 倍。质量为 m、电荷量为 q 的带正电小球(可视为质点),从点 M(L, -2L)以某一初速度沿 y 轴正方向射出,恰好经过原点 O 且此时速度方向刚好沿 x 轴负方向,继续运动一段时间后到达点 $N(-\frac{\sqrt{3}}{2}L, -\frac{3}{2}L)$ 。已知重力加速度大小为 g、求:


- (1) 小球从 M 点运动到原点 O 过程中的水平加速度大小;
- (2) y 轴左侧电场强度的大小;
- (3) 匀强磁场的磁感应强度大小 B。

16. (16分)

如图,一质量为 3m、长度为 L 的木板静止在倾角 θ =30°的固定斜面上,木板的上表面光滑,下表面与斜面间的动摩擦因数 $\mu = \frac{\sqrt{3}}{2}$,木板的下端固定有垂直于木板的薄挡板。一与斜面平行的轻弹簧下端固定在斜面的底端,上端由原长被压缩了 $\frac{L}{2}$ 后用触控锁钉锁定。现将质量为m 的小滑块从木板的中点由静止释放,经过一段时间,滑块与挡板发生第一次碰撞后,木板开始运动。经过多次碰撞后,当滑块位于挡板处且和木板速度都为零时,木板刚好接触弹簧并触发锁钉立即解除锁定。已知重力加速度大小为g,弹簧的劲度系数 $k = \frac{15mg}{L}$,滑块与挡板间的碰撞为弹性正碰,且碰撞时间极短,不计空气阻力。求:

- (1) 滑块第一次与挡板碰撞前瞬间,滑块的速度大小 vo;
- (2) 滑块第一次与挡板碰撞后瞬间,木板的速度大小 vi和加速度大小 a1;
- (3) 木板在初始位置时,其下端与锁钉的距离 d;
- (4) 锁钉解除后, 当滑块与挡板第一次分离时木板的速度大小v'。

