树德中学高 2021 级高二下期 5 月阶段性测试物理试题参考答案

一、单选题

1	2	3	4	5	6	7
В	С	В	С	С	С	D

二、多选题

8	9	10	11	12	13
AC	BC	CD	CD	BD	BCD

14、(每空 2 分)(1) $\frac{\overline{N}}{N}$ (2)<u>偏大</u> (3) $g=4\pi^2 a$

15、(1) <u>b</u> (1分) (2) <u>1</u> (2分) (3) <u>K</u>₂ (2分) (4) <u>V</u>₂ (1分) <u>1.45</u> (2分) <u>1.50</u> (2分)

16、解: (1) 由图像可知, 机械振动的周期 T=0.4s, 机械波的传播速度 $v = \Delta x / \Delta t = 10 m/s$, 机械波传到 x=5m 处的质点需要时间 $t1=\Delta x/v=0.3s$,x=5m 的质点开始振动后第一次回到平衡位置需要 时间

t2=T/2=0.2s, 综上: t=t1+t2=0.5s

(2) t=5T/4,即在题中规定时间内,P 点振动了 $T+\frac{T}{4}$ 的时间,

又 0.2s 时 P 点向下振动,且回到平衡位置需要 $\frac{T}{12}$,则还需经过平衡位置向下振动 $\frac{T}{6}$,

故此时 P 点位于 y= $-\frac{\sqrt{3}}{2}$ A= $-2.5\sqrt{3}$ cm 处。因此 P 点的路程为 S=4A+2.5cm+2.5 $\sqrt{3}$ =22.5+2.5 $\sqrt{3}$ (cm)

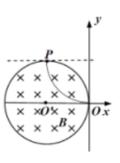
17、解: (1) (4分) 光路如图所示

由几何关系可得角 $r=30^\circ$, $i=r+\alpha=45^\circ$

则由折射定律 $n = \frac{\sin i}{\sin r} = \sqrt{2}$

(2) (6 分) 其临界角 $\sin C = \frac{1}{n} = \frac{\sqrt{2}}{2}$, 得 $C = 45^{\circ}$

由于折射光线平行AO,则光束射到CE边的入射角为 $60^{\circ} > C$,则在CE边发生全反射。

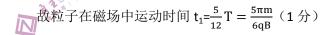

由几何关系可得,光束射到 DE 边的入射角为30°,故从 DE 边射出。则该光束在此玻璃砖

 $v = \frac{c}{n} = \frac{c}{\sqrt{2}}$ 中传播速度为

有几何关系可得光束在玻璃砖中传播的路程为

$$s = 2R\cos 30^{\circ} + \frac{3R}{2} \cdot \frac{1}{\sin 60^{\circ}} = 2\sqrt{3}R$$

$$t = \frac{s}{v} = \frac{2\sqrt{3}R}{\frac{c}{\sqrt{2}}} = \frac{2\sqrt{6}R}{c}$$
则传播时间


18 解: (1) 对粒子 a: 牛顿第二定律有 $qvB=m\frac{v^2}{r}$, (1分)

由根据几何关系有: r=R, (1分)

解得:
$$v = \frac{qBR}{m}$$
 (1分)

(2) b 粒子进入磁场中做匀速圆周运动将会竖直向上离开磁场,如图所示: 由几何关系,b 在磁场中匀速圆周运动对应圆心角 θ_1 =150 0 ,

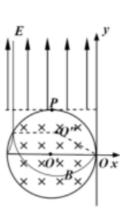
在磁场中匀速圆周运动的周期为 T, $T=\frac{2\pi R}{v}=\frac{2\pi m}{aB}$ (1分)

离开磁场的纵坐标为 $y_1=Rsin30^0=\frac{1}{2}R$,

离开磁场后匀速运动时间为 t_2 : $R-y_1=vt_2$, (1分)

解得
$$t_2 = \frac{m}{2qB}$$
 ,

在电场中匀减速运动到零,运动时间 t_3 : $v=\frac{qE}{m}t_3$ 解得 $t_3=\frac{BR}{F}$ (1分)


故 b 粒子从进入磁场开始到运动到 y 轴方向最高点的时间为 $t=t_1+t_2+t_3=\frac{m(5\pi+3)}{60B}+\frac{BR}{E}$ (1 分)

(3) b 粒子离开磁场的横坐标为一x,由几何关系 $x=R+Rsin60^0=\frac{2+\sqrt{3}}{2}R$,(1分)

之后,沿 y 轴正方向进入匀强电场,做类平抛运动 $a=\frac{qE}{m}$,(1 分)

运动时间为 t,则有 $x=\frac{1}{2}at^2$,(1 分)

y轴方向匀速直线运动位移为 y_1 , y_1 =vt (1分)

$$y=R+BR$$
 $\sqrt{\frac{(2+\sqrt{3})qR}{mE}}$ (1分)

19、 (1) (4 分) 由
$$F_{\rm T} = \frac{mg_2^2}{3v_0}t + \frac{mg}{6}$$
 可得 $t = 0$ 时 $F_{\rm T0} = \frac{mg}{6}$

cd杆受到的安培力大小

$$F_{\rightleftharpoons} = BI_0L$$

$$F_{\text{T0}} + F_{\text{E}} = mg \sin \theta \text{ }$$

由①②式得
$$I_0 = \frac{mg}{3BL}$$
③

(2) (5分) 设回路总电阻为R,则

$$I_0 = \frac{BLv_0}{R} \textcircled{4}$$

$$I = \frac{BLv_t}{R} \textcircled{5}$$

cd 杆受力平衡

$$F_{\rm T} + BIL = mg \sin \theta$$
 (6)

又

$$F_{\rm T} = \frac{mg^2}{3v_0}t + \frac{mg}{6}$$

由④⑤⑥⑦求得 $v_t = v_0 - gt$ ⑧

(3)(7 分)由⑧可知 ab 杆沿倾斜导轨做匀减速运动,加速度大小为a=g ,方向沿导轨向下,ab

杆在
$$t = \frac{3v_0}{2g}$$
 时的速度 $v_t = -\frac{1}{2}v_0$

$$0 \sim \frac{3v_0}{2g}$$
 间内的位移 $s = v_0 t - \frac{1}{2}at^2$ ⑨

由动能定理可得

$$-mg \cdot s \cdot \sin \theta - W_{\pm} + W_F = \frac{1}{2} m v_t^2 - \frac{1}{2} m v_0^2$$
 (10)

由功能关系可知,在 $0 \sim \frac{3v_0}{2g}$ 时间内 ab 杆克服安培力做的功为

$$W_{\Xi} = Q$$

得

$$W_F = Q - \frac{3}{16} m v_0^2$$
 (12)

~ **~** ***

A A WALLEY OF THE PARTY OF THE