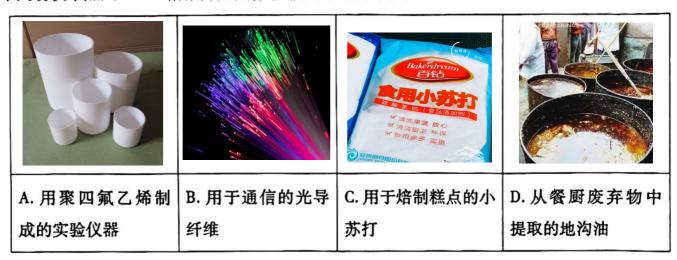
重庆市高 2023 届高三第九次质量检测

化学试题

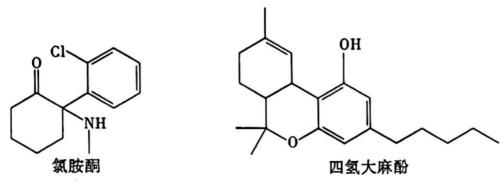
2023.5


命审单位:重庆南开中学

考生注意:

- 1. 本试卷满分 100 分,考试时间 75 分钟。
- 2. 考生作答时,请将答案答在答题卡上。必须在题号所指示的答题区域作答,超出答题区域书写的答案 无效,在试题卷、草稿纸上答题无效。

可能用到的相对原子质量:H-1 Li-7 C-12 O-16 S-32 Fe-56 Cu-64

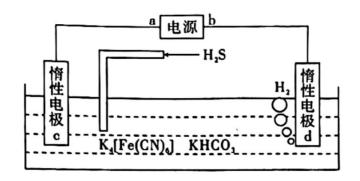

- 一、选择题:本题共 14 小题,每小题 3 分,共 42 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 向下列物质中加入 NaOH 溶液并加热,其成分不发生改变的是

- 2. "结构决定性质,性质决定用途"。下列物质的性质与用途不具有对应关系的是
 - A. 氮化硅耐高温、抗氧化,可用于制造高温结构陶瓷
 - B. 氯化铁溶液显酸性,可用于刻蚀铜制电路板
 - C. 硬铝的密度小、强度高,可用于制造飞机外壳
 - D. 聚乳酸具有生物相容性和可降解性,可用作手术缝合线
- 3. 室温下,下列各组微粒在指定溶液中可能大量共存的是
 - A. 无色透明的水溶液中: K⁺、Na⁺、Cr₂O₂²-
 - B. 硝酸型酸雨的雨水中: NH, * 、Fe²⁺、SO₂-
 - C. 加入金属 Al 产生 H₂ 的水溶液中: K⁺、SO₄²⁻、NO₃⁻
 - D. 水电离的 H⁺浓度为 1 × 10⁻¹² mol/L 的水溶液中: CH₃OH、K⁺、MnO₄⁻

化学试题 第1页(共8页)

- 4. 白铜是一种延展性好、硬度高、色泽美观、耐腐蚀的合金材料,其主要成分为 Cu、Ni、Zn,还含有少量 S、P、As 等元素。关于上述涉及到的元素,下列说法正确的是
 - A. 基态 Ni 原子的简化电子排布式为:3d84s2
 - B. 基态 As 原子最高能级的轨道形状为哑铃形
 - C. 第一电离能:S>P>Cu
 - D.S、P为p区元素,Cu、Zn为d区元素
- 5.2023 年4月3日,沙坪坝区公安分局民警走进重庆南开中学校园,举办了包括刑侦、网安、禁毒、反恐等主题的安全教育活动。学生们在禁毒教育中认识了以氯胺酮、四氢大麻酚等(结构如下图所示)为主要原料的毒品对人体与社会的危害。下列说法正确的是

- A. 氯胺酮的分子式为 C12H13NOCl
- B. 四氢大麻酚中只有1个手性碳原子
- C. 氯胺酮和四氢大麻酚均可以发生取代、加成、氧化、消去反应
- D.1 mol 四氢大麻酚与浓溴水反应,最多可以消耗 3 mol Br₂
- 6. R、W、X、Y、Z 为原子序数依次增大的短周期元素且位于三个不同的周期。 XR_4^+ 、 YR_4^- 、 ZR_4 三种微粒的空间构型相同,W 与 Z 同主族。下列说法正确的是
 - A. 氢化物的沸点:X>Z>W
 - B. 原子半径:Y>Z>X>R
 - C. 最高价氧化物对应水化物的酸性:X>W>Y>Z
 - D. Z 与 W 形成的二元化合物,其晶体熔点比 Z 单质晶体低
- 7. CCl_4 是一种重要的有机溶剂,其工业制备原理为: $CS_2 + 3Cl_2 = CCl_4 + S_2Cl_2$,下列说法正确的是
 - A. CS₂ 和 CCl₄ 中的 C 原子杂化方式均为 sp³
 - B. CS₂ 和 CCl₄ 分子的空间结构分别是 V 形和正四面体
 - C. CS。为非极性分子,S2Cl。为极性分子
 - D. 液态 Cl₂ 挥发时主要破坏共价键


化学试题 第2页(共8页)

- S. 甘油 $(C_3H_8O_3)$ 的化学名称为丙三醇,是一种常用的有机化工原料。设阿伏加德罗常数的值为 N_A , 下列分析正确的是
 - A. 100 g 质量分数为 46% 的甘油水溶液中含有的氧原子数目为 4.5N_A
 - B.2.24 L(标准状况下)甘油含有的羟基数目为 0.3N,
 - C.1...ol 甘油与 3 mol 硬脂酸发生酯化反应,生成的水分子数目为 $3N_A$
 - D.9.2g 甘油完全燃烧转化为水和二氧化碳,转移电子数目为 $1.2N_A$
- 9. 根据下列实验的操作和现象,可以说明相应结论的是

选项	操作	现象	结论	
A	将乙醇和浓硫酸的混合液加热, 将生成的气体通人溴水中	溴水褪色	乙醇发生了消去反应	
В	将某铁的氧化物用稀盐酸溶解, 再滴入2滴酸性 KMnO ₄ 溶液	酸性 KMnO ₄ 溶液褪色	该氧化物中一定含有 Fe ²⁺	
С	向某溶液中加入少量铜粉并振荡, 铜粉不溶解,再滴入2滴稀硫酸	铜粉溶解,产生红棕色	原溶液中含有 NO3-	
D	向 2 mL 1 mol/L 的 CuSO ₄ 溶液中 滴人2 滴 0.1 mol/L NaOH 溶液, 再滴加 2 滴 0.1 mol/L Na ₂ S 溶液	先产生蓝色沉淀,再产生 黑色沉淀	$K_{\rm sp}[\operatorname{Cu}(\operatorname{OH})_2] > K_{\rm sp}(\operatorname{CuS})$	

- 10. 如图所示是黄铁矿主要成分 FeS_2 的晶胞,其阴阳离子的排布方式与氯化钠晶体相似,但 S_2^2 是 双原子离子,因此同一晶胞中存在多种取向的 S_2^2 。若阿伏加德罗常数的值为 N_A ,下列说法正确的是
 - A. 晶胞中与 Fe2+等距离且最近的 Fe2+有8个
 - B. 甲、乙两处的 S2 的取向可能不同
 - C. S 原子的半径为 $\frac{\sqrt{2}}{4}a$ pm
 - D. 黄铁矿晶体密度的计算式为 $\frac{4.8 \times 10^{32}}{N_{A}a^{3}}$ g/cm³
- 11. 可用以下方法将气态废弃物中的 H₂S 气体间接氧化为 S 而加以利用:以 K₄[Fe(CN)₆]和 KHCO₃ 的混合液为电解质溶液,控制电压通电,惰性电极 d 附近有 H₂产生,惰性电极 c 附近无气体生成。一段时间后将 H₂S 通人溶液中发生反应。下列说法不正确的是

化学试题 第3页(共8页)

- A. 电解过程中, [Fe(CN)₆] 4- 向惰性电极 c 移动
- B. 电解过程中, 惰性电极 d 附近的 pH 上升
- C. 当外电路流过 1 mol e T时, 理论上可制备 16 g S
- D. 该过程中需要不断补充 K₄[Fe(CN)₆]和 KHCO₃
- 12.25 ℃下,向下列溶液中通人相应的气体至溶液呈中性。已知 K_{a} (CH₃COOH) = 1.75 × 10⁻⁵。 对所得溶液中微粒的浓度分析正确的是

选项	原溶液	通人气体	分析	
A	NaClO	SO ₂	$c(\text{Na}^+) = c(\text{ClO}^-) + c(\text{HSO}_3^-) + 2c(\text{SO}_3^{2-})$	
В	CH ₃ COONa	НІ	$c(CH_3COO^-) > c(CH_3COOH) = c(I^-)$	
С	(NH ₄) ₂ CO ₃	CO ₂	$c(NH_4^+) + c(NH_3 \cdot H_2O) = 2[c(H_2CO_3) + c(HCO_3^-) + c(CO_3^{2-})]$	
D	KHSO ₃	NH ₃	$c(K^+) > c(NH_4^+) > c(SO_3^2 +) > c(HSO_3^-)$	

13. 将 2 mol Cl₂ 和 3 mol F₂ 置于密闭容器中,在 250 ℃下只发生如下两个反应:

$$Cl_2 + F_2 = 2ClF$$
 $\Delta H_1 = a \text{ kJ/mol}$
 $Cl_2 + 3F_2 = 2ClF_3$ $\Delta H_2 = b \text{ kJ/mol}$

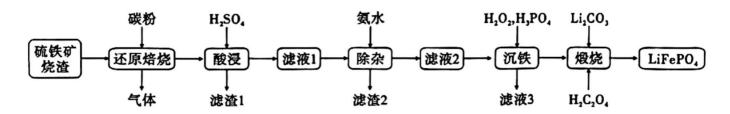
一段时间后,Cl,和F,恰好全部消耗,共放出303 kJ热量。

已知:部分化学键的键能如下表所示

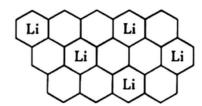
化学键	F—F	Cl—Cl	F—Cl (ClF中)	F—Cl (ClF ₃ 中)
键能/(kJ/mol)	157	243	248	X

则X的值为

A. 172


B. 202

C. 238


D. 258

化学试题 第4页(共8页)

- 14. 将 m g CuO 固体放入体积为 2 L 的真空密闭容器中,保持温度不变,发生反应: 4CuO(s) \Longrightarrow 2Cu $_2$ O(s)
 - $+O_2(g)$ 。达到平衡时, O_2 的物质的量为 0.1 mol。下列说法正确的是
 - A. 保持容器体积不变, 向平衡体系中通人 Ar, 平衡正向移动
 - B. 向平衡体系再通人 $0.1 \text{ mol } O_2$, 达到新的平衡后, $0.05 \text{ mol/L} < c(O_2) < 0.1 \text{ mol/L}$
 - C. 压缩容器体积为原来的一半,达到新的平衡后容器中的固体质量增加3.2 g
 - D. 扩大容器体积为 5 L,一段时间后 $c(O_2) = 0.04 \text{ mol/L}$ 且维持不变,则 m = 64
- 二、非选择题:共58分。
- 15. (15 分)新能源汽车发展迅速,其中比亚迪公司的刀片电池极大提高了汽车的续航里程。该电池 使用的磷酸铁锂可使用硫铁矿烧渣(主要成分是 Fe₂O₃,含少量 SiO₂、Al₂O₃ 和 CaO)为原料,通过 以下工艺制备:

- (1)写出 H₂O₂ 的电子式:______,滤渣 2 的主要成分为_____(填化学式)。
- (2)"酸浸"需要控制温度为 65~80 ℃,原因是
- (3)"沉铁"步骤反应的离子方程式为
- (4)若"滤液 2"中 $c(Ca^{2+})=0.002 \text{ mol/L}$,加入双氧水和磷酸后,溶液的体积增加了一倍,使 Fe^{3+} 恰好完全沉淀即溶液中 $c(Fe^{3+})=1.0\times10^{-5} \text{ mol/L}$,此时"沉铁"得到的 $FePO_4$ 沉淀中______(选填"含有"或"不含有")含钙杂质。已知: $K_{sp}(FePO_4)=1.3\times10^{-22}$, $K_{sp}[Ca_3(PO_4)_2]=1.6\times10^{-26}$ 。
- (5)为提高原料利用率,"滤液3"可返回______步骤。

用该电池电解精炼铜,当电池负极质量改变 10.5 g 时,得到精铜 38.4 g,则电子利用率为_____%。

16.	$A(14~\mathcal{G})$ 物质的性质决定者反应的多样性。对于 Ag^+ 与 I^- 的反应, Z 同学就有着不同想法。
	为此,他设计了以下实验:
	(1)研究 AgNO, 溶液与 KI 溶液反应
	实验 [:向盛有1 mL1 mol/L AgNO, 溶液的试管中加入1 mL1 mol/L KI 溶液,振荡试管,静置。
	取上层清液,向其中加入,溶液无明显变化。
	结论 I:二者混合只发生沉淀反应,无明显氧化还原反应。
	(2)探究 Ag ⁺ 的氧化性强弱
	实验 II: 将打磨光亮的铁丝伸入1 mol/L AgNO3 溶液中, 一段时间后将铁丝取出。除去溶液中
	剩余的 Ag*,取1~2 mL 溶液于试管中,加入试剂 X,振荡,溶液变为红色,证明溶液中存在
	Fe ³⁺ 。试剂 X 应为。
	结论Ⅱ:。
	已知 Fe ³⁺ 氧化性大于 I ₂ ,则证明 Ag ⁺ 可与 I ⁻ 发生氧化还原反应。
	(3)①X 同学测得常温下该 AgNO₃ 溶液的 pH 为 5.5,于是对结论 II 提出质疑,认为可能是酸性条
	件下 NO ₃ 体现了氧化性。
	为了验证其质疑是否正确,他设计了一个对比实验:将打磨光亮的铁丝伸人
	溶液中,一段时间后将铁丝取出。取 1~2 mL 溶液于试管中,加入试剂 X,观察溶液是否
	呈红色。
	②同时,X 同学考虑到 AgNO3 溶液与 KI 溶液反应体系中存在竞争反应。所以,他设计了以下
	实验来探究 Ag ⁺ 与 I ⁻ 的氧化还原反应
	石墨电极a电极b 电极a RI溶液 AgNO,溶液
	根据此装置,盐桥中可选择作为电解质。
	a. KCl b. KNO ₃ c. K ₂ SO ₄
	在此实验中,可通过(填实验现象)证明 Ag ⁺ 与 I ⁻ 一定发生了氧化
	还原反应。
	(4) X 同学查阅资料,得知常温下,Ag ⁺ + I ⁻ ==== AgI K ₁ = 1.17 × 10 ¹⁶ 、2Ag ⁺ + 2I ⁻ ==== I ₂ + 2Ag
	$K_2 = 3 \times 10^8$,试从速率和平衡两个方面解释 A_gNO_3 溶液与 KI 溶液混合只发生沉淀反应而
	无明显氧化还原反应的可能原因:。

- 17. (15 分)工业生产中产生的烟气中常含有氮氧化物 NO.,为了防止污染大气,排放前需要经过适当 处理脱除 NO.。
 - (1)在一定条件下,可用 CO 还原 NO,其原理为:2CO(g) +2NO(g) → 2CO₂(g) + N₂(g)。 已知:标准摩尔生成焓指标准状态下由最稳定的单质合成 1 mol 该物质的焓变。一些物质的 燃烧热或标准摩尔生成焓如下表所示。

物质	C(s)	CO(g)	NO(g)
燃烧热 ΔH(kJ/mol)	-393.5		
标准摩尔生成焓 Δ _f H ^θ _m (kJ/mol)	0	-110.5	+90.5

 $(1)2CO(g) + 2NO(g) \Longrightarrow 2CO_2(g) + N_2(g) \quad \Delta H =$

②下列措施能够同时提高上述反应的速率和 NO 平衡转化率的是 (填标号)。

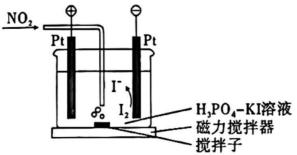
A. 使用催化剂

- ③一定温度下,在体积恒为 2 L 的密闭容器中通人 CO 与 NO 各 2 mol,初始压强为 20 kPa。 仅发生上述反应,达到平衡后, $c(N_2)=2:1$,则此温度下该反应的压强平衡常数 $K_a =$ _____ kPa^{-1} 。再向容器中通人 2 $mol\ CO_2$ 和 1 $mol\ N_2$,达到新的平衡时,混合气体中 NO 的体积分数相比原平衡 (选填"增大"、"减小"或"不变")。
- (2)CO 也可以还原 NO, 反应原理为:NO, (g) + CO(g) === NO(g) + CO, (g)。

研究发现,该反应分两步进行:

第一步:NO₂(g) + NO₂(g) → NO₃(g) + NO(g) (慢反应)

第二步: $NO_3(g) + CO(g) \longrightarrow NO_2(g) + CO_2(g)$ (快反应)


已知:此条件下,该反应的化学反应速率 $v = k \cdot c(NO_2)(k)$ 为速率常数,只与温度有关)。

下列分析正确的是 (填标号)。

A. 增大 NO₂ 浓度,该反应速率增大 B. 增大 CO 浓度,该反应速率几乎不变

C. NO、是该反应的催化剂

- D. 第一步反应的活化能小于第二步反应
- (3)工业烟气中的 NO₂ 常常无法完全脱除,可用下图所示装置来测定工业烟气中 NO₂ 的脱除率, 其原理如下:

化学试题 第7页(共8页)

NO_2 与 I 反应(NO_2 被还原为 NO_3 烟气中其他成分均不参与反应)。此时电解池自动开始
工作,直到 $c(I_2)/c(I^-)$ 重新变为 n ,电解自动结束。
①装置工作时,阴极反应的电极反应式为:,NO2 被 I 还原的离子方程式
为。
②将某工业烟气分为等体积的两份,其中一份直接通入该装置,另一份脱除部分 NO ₂ 后再通人
该装置,两次电解过程中转移的电子量分别为 a mol、b mol,则本次 NO2 脱除率为。
18.(14分)氮杂环丁烷-2-羧酸(G)是一种重要的化合物,常用于合成抗体-药物结合物(ADC)。
其合成路线如下(Ph 为苯基):
но см
Ph A DMSO,50℃
COOH H ₂ ,Pd/C 反应6 F
(1)化合物 B 的系统命名为:,D 中含有的含氧官能团为(填名称)。
(2)反应 2 和反应 6 的反应类型分别为,。
(3)反应3生成一种有刺激性气味的气体,写出该反应的化学方程式:。
(4)化合物 F 的结构简式为。
(5)分子式比 G 少—个氧原子的化合物 H 满足下列条件的同分异构体有种(不考虑立体 异构):
a. 能发生水解反应 b. 不含有三元环状结构 c. 不含有 C = N 的结构
(6) 反应 4 中,除了得到 F 外,还得到了一种含有八元环结构的化合物 M ,其分子式为 C_{24} N_4 H_{28} ,

测定开始前,电解质溶液中 $c(l_2)/c(l^-)=n$ 。测定时,将含 NO_2 的烟气中通人电解质溶液中使

画出其结构简式:_____