

秘密★启用前 试卷类型: B

2019 年广州市普通高中毕业班综合测试(二)

理科数学

2019. 4

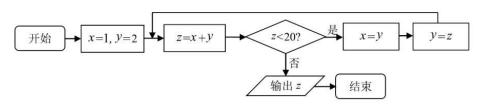
本试卷共6页,23小题,满分150分。考试用时120分钟。

- 注意事项: 1. 答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B 铅笔在答题卡的相应位置填涂考生号,并将试卷类型(B)填涂在答题卡相应位置上。
 - 2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答 案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在 试卷上。
 - 3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指 定区域内的相应位置上; 如需改动, 先划掉原来的答案, 然后再写上新答案; 不准使用铅笔和涂改液。不按以上要求作答无效。
 - 4. 考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
- 一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分. 在每小题给出的四个选项中, 只有一 项是符合题目要求的.
- 1. 已知复数z = m(3+i)-(2+i)在复平面内对应的点在第三象限,则实数m的取值范围是

- A. $(-\infty,1)$ B. $\left(-\infty,\frac{2}{3}\right)$ C. $\left(\frac{2}{3},1\right)$ D. $\left(-\infty,\frac{2}{3}\right) \cup \left(1,+\infty\right)$
- 2. 己知集合 $A = \left\{ x \middle| 1 \frac{8}{x-2} < 0 \right\}$, 则 $\mathbb{C}_{\mathbf{R}} A =$
 - A. $\{x \mid x < 2 \exists x \ge 6\}$
- B. $\{x \mid x \leq 2$ 或 $x \geq 6\}$
- C. $\{x | x < 2 \exists x \ge 10\}$
- D. $\{x \mid x \leq 2$ 或 $x \geq 10\}$
- 3. 某公司生产A, B, C三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的 产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=
 - A. 96
- B. 72
- C. 48
- D. 36

理科数学试题B 第1页 (共6页)

4. 执行如图所示的程序框图,则输出z的值是



- A. 21
- B. 22
- C. 23
- D. 24
- 5. 已知点 A 与点 B(1,2) 关于直线 x+y+3=0 对称,则点 A 的坐标为
 - A. (3,4)
- B. (4,5)
- C. (-4,-3) D. (-5,-4)
- 6. 从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动. 设所选 3 人中女生人数为 ξ ,则数学期望 $E\xi$ =
 - A. $\frac{4}{5}$
- B. 1 C. $\frac{7}{5}$ D. 2
- 7. 已知 $\sin \alpha + \cos \alpha = \frac{1}{5}$, 其中 $\alpha \in \left(\frac{\pi}{2}, \pi\right)$, 则 $\tan 2\alpha =$
 - A. $-\frac{24}{7}$
- B. $-\frac{4}{3}$ C. $\frac{7}{24}$ D. $\frac{24}{7}$
- 8. 过双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左焦点 F 作圆 $x^2 + y^2 = \frac{a^2}{9}$ 的切线,切点为 E,延 长FE交双曲线右支于点P,若 $\overrightarrow{FP} = 2\overrightarrow{FE}$,则双曲线的离心率为
 - A. $\frac{\sqrt{17}}{3}$ B. $\frac{\sqrt{17}}{6}$ C. $\frac{\sqrt{10}}{5}$ D. $\frac{\sqrt{10}}{2}$

- 9. 若曲线 $y = x^3 2x^2 + 2$ 在点 A 处的切线方程为 y = 4x 6, 且点 A 在直线

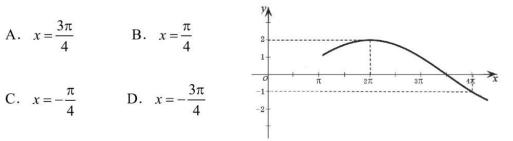
mx + ny - 1 = 0 (其中m > 0, n > 0) 上,则 $\frac{1}{m} + \frac{2}{n}$ 的最小值为

- A. $4\sqrt{2}$ B. $3+2\sqrt{2}$ C. $6+4\sqrt{2}$ D. $8\sqrt{2}$

理科数学试题 B 第 2 页 (共 6 页)

咨询热线: 010-5601 9830

10. 函数 $f(x) = 2\sin(\omega x + \varphi)(\omega > 0, |\varphi| < \pi)$ 的部分图像如图所示, 先把函数 y = f(x)图像上各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标不变,再把得到的图像向右平移 $\frac{\pi}{4}$ 个单位长度,得到函数y=g(x)的图像,则函数y=g(x)的图像的一条对称轴为



$$C. \quad x = -\frac{\pi}{4}$$

D.
$$x = -\frac{3\pi}{4}$$

11. 已知点 P 在直线 x+2y-1=0 上,点 Q 在直线 x+2y+3=0 上, PQ 的中点为 $M(x_0, y_0)$, 且1 $\leq y_0 - x_0 \leq 7$, 则 $\frac{y_0}{r}$ 的取值范围为

A.
$$\left[2, \frac{12}{5}\right]$$

B.
$$\left[-\frac{2}{5}, 0\right]$$

A.
$$\left[2, \frac{12}{5}\right]$$
 B. $\left[-\frac{2}{5}, 0\right]$ C. $\left[-\frac{5}{16}, \frac{1}{4}\right]$ D. $\left[-2, \frac{2}{5}\right]$

D.
$$\left[-2,\frac{2}{5}\right]$$

12. 若点 A(t,0) 与曲线 $y = e^x$ 上点 P 的距离的最小值为 $2\sqrt{3}$, 则实数 t 的值为

A.
$$4 - \frac{\ln 2}{3}$$
 B. $4 - \frac{\ln 2}{2}$ C. $3 + \frac{\ln 3}{3}$ D. $3 + \frac{\ln 3}{2}$

B.
$$4 - \frac{\ln 2}{2}$$

C.
$$3 + \frac{\ln 3}{3}$$

D.
$$3 + \frac{\ln 3}{2}$$

二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.

13. 若 e_1 , e_2 是夹角为 60° 的两个单位向量,向量 $a=2e_1+e_2$,则|a|=_____.

14. 若 $(ax-1)^5$ 的展开式中 x^3 的系数是80,则实数a的值是

15. 秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面 积的方法: "以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减 上, 余四约之, 为实. 一为从隅, 开平方得积."如果把以上这段文字写成公式就是

$$S = \sqrt{\frac{1}{4} \left[a^2 c^2 - \left(\frac{a^2 + c^2 - b^2}{2} \right)^2 \right]}$$
,其中 a , b , c 是 \triangle ABC 的内角 A , B , C 的对边 .

若 $\sin C = 2 \sin A \cos B$,且 b^2 , 1, c^2 成等差数列,则 $\triangle ABC$ 面积 S 的最大值为_____.

16. 有一个底面半径为R, 轴截面为正三角形的圆锥纸盒, 在该纸盒内放一个棱长均为a的 四面体,并且四面体在纸盒内可以任意转动,则 a 的最大值为_

理科数学试题 B 第 3 页 (共 6 页)

官方微信公众号: zizzsw 官方网站: www.zizzs.com 微信客服: zizzs2018

- 三、解答题: 共 70 分. 解答应写出文字说明、证明过程和演算步骤. 第 $17\sim21$ 题为必考题,每个试题考生都必须做答. 第 22、23 题为选考题,考生根据要求做答.
 - (一) 必考题: 共60分.
- 17. (本小题满分 12 分)

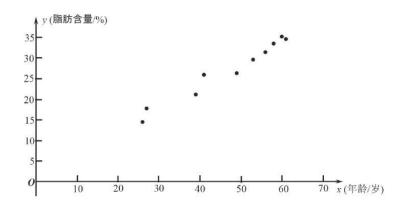
已知 $\{a_n\}$ 是递增的等比数列, $a_2 + a_3 = 4$, $a_1 a_4 = 3$.

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 令 $b_n = na_n$, 求数列 $\{b_n\}$ 的前n项和 S_n .
- 18. (本小题满分 12 分)

科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:

x (年龄/岁)	26	27	39	41	49	53	56	58	60	61
y (脂肪含量 /%)	14.5	17.8	21.2	25.9	26.3	29.6	31.4	33.5	35.2	34.6

根据上表的数据得到如下的散点图.



- (1) 根据上表中的样本数据及其散点图:
- (i) 求 \overline{x} ;
- (ii) 计算样本相关系数 (精确到 0.01), 并刻画它们的相关程度.
- (2)若y关于x 的线性回归方程为 $\hat{y}=1.56+\hat{b}x$,求 \hat{b} 的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.

理科数学试题B 第4页 (共6页)

附:

参考数据:
$$\overline{y} = 27$$
, $\sum_{i=1}^{10} x_i y_i = 13527.8$, $\sum_{i=1}^{10} x_i^2 = 23638$, $\sum_{i=1}^{10} y_i^2 = 7759.6$, $\sqrt{43} \approx 6.56$,

 $\sqrt{2935} \approx 54.18$.

参考公式: 相关系数
$$r = \frac{\displaystyle\sum_{i=1}^n \left(x_i - \overline{x}\right) \left(y_i - \overline{y}\right)}{\displaystyle\sqrt{\displaystyle\sum_{i=1}^n \left(x_i - \overline{x}\right)^2} \sqrt{\displaystyle\sum_{i=1}^n \left(y_i - \overline{y}\right)^2}} = \frac{\displaystyle\sum_{i=1}^n x_i y_i - n \overline{x} \overline{y}}{\displaystyle\sqrt{\displaystyle\sum_{i=1}^n x_i^2 - n \left(\overline{x}\right)^2} \sqrt{\displaystyle\sum_{i=1}^n y_i^2 - n \left(\overline{y}\right)^2}}.$$

回归方程
$$\hat{y} = \hat{a} + \hat{b}x$$
 中斜率和截距的最小二乘估计公式分别为 $\hat{b} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$,

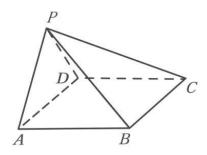
$$\hat{a} = \overline{y} - \hat{b}\overline{x} .$$

19. (本小题满分 12 分)

如图, 在四棱锥 P-ABCD 中, 底面 ABCD 为菱形,

$$\angle BAD = 60^{\circ}$$
, $\angle APD = 90^{\circ}$, $\exists AD = PB$.

- (1) 求证: 平面 PAD \ 平面 ABCD;
- (2) 若 $AD \perp PB$, 求二面角 D-PB-C 的余弦值.



20. (本小题满分 12 分)

在平面直角坐标系中,动点M分别与两个定点A(-2,0),B(2,0)的连线的斜率之积为 $-\frac{1}{2}$.

- (1) 求动点M 的轨迹C的方程;
- (2)设过点 $\left(-1,0\right)$ 的直线与轨迹C交于P,Q两点,判断直线 $x=-\frac{5}{2}$ 与以线段PQ为直径的圆的位置关系,并说明理由.

理科数学试题B 第5页 (共6页)

21. (本小题满分 12 分)

已知函数
$$f(x) = \ln x - \frac{k}{x^2} (k \in \mathbf{R})$$
.

- (1) 讨论函数 f(x) 的单调性;
- (2) 若函数 f(x) 有两个零点 x_1 , x_2 , 求 k 的取值范围, 并证明 $x_1 + x_2 > 2\sqrt{-2k}$.
- (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
- 22. [选修 4 4: 坐标系与参数方程] (本小题满分 10 分)

在直角坐标系 xOy 中,倾斜角为 α 的直线 l 的参数方程为 $\begin{cases} x=2+t\cos\alpha, \\ y=\sqrt{3}+t\sin\alpha \end{cases}$ (t 为参

- 数). 在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为 $\rho^2 = 2\rho\cos\theta + 8 \ .$
 - (1) 求直线l的普通方程与曲线C的直角坐标方程;
 - (2) 若直线l与曲线C交于A,B两点,且 $|AB|=4\sqrt{2}$,求直线l的倾斜角.
- 23. [选修 4-5: 不等式选讲](本小题满分 10 分)

已知函数 f(x) = |2x-1| - a.

- (1) 当a=1时,解不等式f(x)>x+1;
- (2) 若存在实数x, 使得 $f(x) < \frac{1}{2} f(x+1)$ 成立, 求实数a 的取值范围.

理科数学试题B 第6页 (共6页)

绝密 ★ 启用前

2019年广州市普通高中毕业班综合测试(二)

理科数学试题答案及评分参考

评分说明

- 1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内 容比照评分参考制订相应的评分细则.
- 2. 对计算题, 当考生的解答在某一步出现错误时, 如果后继部分的解答未改变该题的内容和难度, 可视影响的程度决定后维部分的给分,但不得超过该部分正确解答应得分数的一半; 如果后维部分的解答 有较严重的错误,就不再给分.
 - 3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.
 - 4. 只给整数分数,选择题不给中间分,

一、选择题

題号	1	2	3	4	5	6	7	8	9	10	11	12
答案	В	D	В	A	D	В	D	A	C	C	В	D

二、填空题

13. $\sqrt{7}$ 14. 2 15. $\frac{\sqrt{5}}{5}$ 16. $\frac{2\sqrt{2}}{3}R$

三、解答题

17. 解法 1: (1) 设等比数列 $\{a_a\}$ 的公比为q,

因为 $a_2 + a_3 = 4$, $a_1 a_4 = 3$,

所以
$$\begin{cases} a_1q + a_1q^2 = 4, \\ a_1 \bullet a_1q^3 = 3. \end{cases}$$

解得
$$\begin{cases} a_i = 9, \\ q = \frac{1}{3}, \end{cases}$$
 或 $\begin{cases} a_i = \frac{1}{3}, \\ q = 3. \end{cases}$ 4 分

因为{a_n}是递增的等比数列,

解法 2: (1) 设等比数列 $\{a_a\}$ 的公比为 q ,

数学(理科)答案A 第1页共15页

因为 $a_2 + a_3 = 4$, $a_1 a_4 = a_2 a_3 = 3$, 解得 $\begin{cases} a_2 = 1, & \text{id} \\ a_3 = 3, \end{cases}$ $\begin{cases} a_2 = 3, & \text{id} \\ a_3 = 1. \end{cases}$ 4 分 因为{a_n}是递增的等比数列, 在①式两边同时乘以3得, 所以 $S_n = \frac{1}{4}(2n-1) \times 3^{n-1} + \frac{1}{12}$. 18. 解: (1) 根据上表中的样本数据及其散点图: (i) $\bar{x} = \frac{26 + 27 + 39 + 41 + 49 + 53 + 56 + 58 + 60 + 61}{2 + 27 + 39 + 41 + 49 + 53 + 56 + 58 + 60 + 61} = 47$. (ii) $r = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{xy}}{\sqrt{\sum_{i=1}^{n} x_i^2 - n(\overline{x})^2} \sqrt{\sum_{j=1}^{n} y_j^2 - n(\overline{y})^2}} = \frac{13527.8 - 10 \times 47 \times 27}{\sqrt{23638 - 10 \times 47^2} \sqrt{7759.6 - 10 \times 27^2}} \dots 3$ $= \frac{6378}{6\sqrt{43} \times 4\sqrt{2935}}.$ 5 \(\frac{1}{2}\)

数学 (理科) 答案 A 第 2 页 共 15 页

因为 $\sqrt{43} \approx 6.56$, $\sqrt{2935} \approx 54.18$,

所以
$$\hat{b} = \frac{\overline{y} - \hat{a}}{\overline{x}} = \frac{27 - 1.56}{47} \approx 0.54$$
.

所以y关于x的线性回归方程为 $\hat{y} = 0.54x + 1.56$.

19. (1) 证明: 取 AD 中点 O, 连结 OP, OB, BD,

因为底面 ABCD 为菱形, $\angle BAD = 60^{\circ}$,

所以AD = AB = BD.

因为O为AD的中点,

在 $\triangle APD$ 中, $\angle APD = 90^{\circ}$, O为AD的中点,

所以
$$PO = \frac{1}{2}AD = AO$$
.

设 AD = PB = 2a,则 $OB = \sqrt{3}a$, PO = OA = a,

【2 分段另证: 在 \triangle APD 中, \angle APD = 90°, O为 AD 的中点,所以 PO = $\frac{1}{2}$ AD = AO .

在 \triangle BOP 和 \triangle BOA中,因为PO=AO,PB=AD=AB,BO=BO,所以 \triangle BOP \cong \triangle BOA.

所以 $\angle BOP = \angle BOA = 90^{\circ}$. 所以 $OP \perp OB$. 】

因为 $OP \cap AD = O$, $OP \subset$ 平面PAD, $AD \subset$ 平面PAD,

因为OB \subset 平面ABCD,

数学(理科)答案A 第 3 页 共 15 页

(2) 解法1: 因为 AD ⊥ PB, AD ⊥ OB, OB ∩ PB = B,

PB C平面POB, OB C平面POB,

所以AD 1 平面 POB.

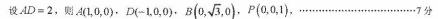
所以 $PO \perp AD$.

由(1)得 $PO \perp OB$, $AD \perp OB$,

所以OA, OB, OP 所在的直线两两互相垂直.

.....5 分

以O为坐标原点,分别以OA,OB,OP 所在直线为x 轴,y 轴,z 轴 建 立 如 图 所 示 的 空 间 直 角 坐 标



所以
$$\overrightarrow{PD} = (-1, 0, -1)$$
, $\overrightarrow{PB} = (0, \sqrt{3}, -1)$, $\overrightarrow{BC} = \overrightarrow{AD} = (-2, 0, 0)$,

设平面 PBD 的法向量为 $n = (x_1, y_1, z_1)$.

设平面PBC的法向量为 $m = (x_2, y_2, z_2)$,

设二面角 D-PB-C 为 θ , 由于 θ 为锐角,

所以 $\cos \theta = |\cos \langle m, n \rangle$ 11 分

$$=\frac{4}{2\times\sqrt{7}}=\frac{2\sqrt{7}}{7}.$$

数学(理科)答案A 第4页共15页

官方微信公众号: zizzsw 咨询热线: 010-5601 9830

官方网站: www.zizzs.com 微信客服: zizzs2018

解法2: 因为 $AD \perp PB$, $AD \perp OB$, $OB \cap PB = B$, $PB \subset \text{平面} POB$, $OB \subset \text{平面} POB$,

所以AD L平面POB.

所以PO ⊥ AD5 分

所以PO = a, $PD = \sqrt{2}a$.

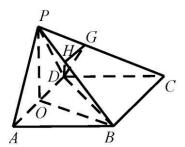
过点D作 $DH \perp PB$, H为垂足,

过点H作HG//BC 交PC 于点G, 连接DG, ……6分

因为 $AD \perp PB$, BC//AD,

所以 $BC \perp PB$, 即 $HG \perp PB$.

在等腰 $\triangle BDP$ 中,BD = BP = 2a, $PD = \sqrt{2}a$,



进而可以求得 $PH = \frac{1}{2}a$,

在 $\triangle PDC$ 中, $PD = \sqrt{2}a$,DC = 2a, $PC = 2\sqrt{2}a$,

所以
$$\cos \angle DPC = \frac{PD^2 + PC^2 - DC^2}{2PD \times PC} = \frac{3}{4}$$
.

在△*PDG* 中, *PD* =
$$\sqrt{2}a$$
, $PG = \frac{\sqrt{2}}{2}a$, $\cos \angle DPC = \frac{3}{4}$,

在
$$\triangle DHG$$
中, $DH = \frac{\sqrt{7}}{2}a$, $HG = \frac{1}{2}a$, $DG = a$,

数学(理科)答案A 第5页共15页

20. 解: (1) 设动点M 的坐标为(x,y),

所以可设过点(-1,0)的直线方程为x = my - 1,

设直线x = my - 1与轨迹C的交点坐标为 $P(x_1, y_1)$, $Q(x_2, y_2)$,

因为 $\Delta = (-2m)^2 + 12(m^2 + 2) > 0$,

注意到
$$x_1 + x_2 = m(y_1 + y_2) - 2 = \frac{-4}{m^2 + 2}$$
.

因为
$$|PQ| = \sqrt{1+m^2} |y_1 - y_2| = \sqrt{\left(1+m^2\right) \left[\left(\frac{2m}{m^2+2}\right)^2 + \frac{12}{m^2+2}\right]}$$

$$= \frac{2\sqrt{(1+m^2)(4m^2+6)}}{m^2+2}.$$
 9 \$\frac{2}{3}

数学(理科)答案A 第6页共15页

医为
$$d^2 - \frac{|PQ|^2}{4} = \frac{9m^4 + 20m^2 + 12}{4(m^2 + 2)^2} > 0$$
, 11 分 即 $d > \frac{|PQ|}{2}$,所以直线 $x = -\frac{5}{2}$ 与以线段 PQ 为直径的圆相离。 12 分 **解法** 2: ①当过点 $(-1,0)$ 的直线斜率不存在时,直线方程为 $x = -1$,与 $\frac{x^2}{4} + \frac{y^2}{2} = 1$ 交于 $P\left(-1, -\frac{\sqrt{6}}{2}\right)$ 那 $Q\left(-1, \frac{\sqrt{6}}{2}\right)$ 两点,此时直线 $x = -\frac{5}{2}$ 与以线段 PQ 为直径的圆相离。 5分 ②当过点 $(-1,0)$ 的直线斜率存在时,设其方程为 $y = k(x+1)$,设直线 $y = k(x+1)$ 与轨迹 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 为 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 因 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 为 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 为 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 为 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 的 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 为 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 的 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 的 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 为 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 为 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 为 $P\left(-1, \frac{\sqrt{6}}{2}\right)$ 的 $P\left(-1, \frac{\sqrt{6}}{2}\right$

数学(理科)答案A 第7页共15页

21. (1) 解: 因为
$$f(x) = \ln x - \frac{k}{x^2}$$
, 函数 $f(x)$ 的定义域为 $(0, +\infty)$,

所以
$$f'(x) = \frac{1}{x} + \frac{2k}{x^3} = \frac{x^2 + 2k}{x^3}, x > 0$$
.

当 $k \ge 0$ 时,f'(x) > 0,

当
$$k < 0$$
 时,由 $f'(x) = 0$,得 $x = \sqrt{-2k}$ (负根舍去),

$$\exists x \in (0, \sqrt{-2k})$$
 by, $f'(x) < 0$, $\exists x \in (\sqrt{-2k}, +\infty)$ by, $f'(x) > 0$,

综上所述,当
$$k \ge 0$$
 时,函数 $f(x)$ 在 $(0,+\infty)$ 上单调递增;当 $k < 0$ 时,函数 $f(x)$ 在 $\left(0,\sqrt{-2k}\right)$ 上单

(2) 先求 k 的取值范围:

【方法 1】由(1)知,当 $k \ge 0$ 时,f(x)在 $(0,+\infty)$ 上单调递增,不可能有两个零点,不满足条件。

.....5 5

当
$$k < 0$$
 时,函数 $f(x)$ 在 $\left(0, \sqrt{-2k}\right)$ 上单调递减,在 $\left(\sqrt{-2k}, +\infty\right)$ 上单调递增,

所以
$$f(x)_{\min} = f\left(\sqrt{-2k}\right) = \ln \sqrt{-2k} + \frac{1}{2}$$
,

要使函数
$$f(x)$$
 有两个零点,首先 $f(x)_{\min} = \ln \sqrt{-2k} + \frac{1}{2} < 0$,解得 $-\frac{1}{2e} < k < 0$. ………………6 分

因为
$$-2k < \sqrt{-2k} < 1$$
, 且 $f(1) = -k > 0$,

下面证明
$$f(-2k) = \ln(-2k) - \frac{1}{4k} > 0$$
.

设
$$g(k) = \ln(-2k) - \frac{1}{4k}$$
,则 $g'(k) = \frac{1}{k} + \frac{1}{4k^2} = \frac{4k+1}{4k^2}$.

因为
$$k > -\frac{1}{2e}$$
,所以 $g'(k) = \frac{1}{k} + \frac{1}{4k^2} = \frac{4k+1}{4k^2} > -\frac{\frac{2}{e}+1}{4k^2} > 0$.

所以
$$g(k)$$
在 $\left(-\frac{1}{2e},0\right)$ 上单调递增,

所以
$$f(-2k) = g(k) > g\left(-\frac{1}{2e}\right) = \ln\frac{1}{e} + \frac{e}{2} > 0$$
.

数学(理科)答案A 第8页共15页

【若考生书写为: 因为当 $x \to 0^+$ 时, $f(x) \to +\infty$,且f(1) = -k > 0.此处不扣分】

设
$$g(x) = x^2 \ln x$$
, 则 $g'(x) = x(2 \ln x + 1)$.

当
$$0 < x < e^{\frac{1}{2}}$$
时, $g'(x) < 0$,当 $x > e^{\frac{1}{2}}$ 时, $g'(x) > 0$,

所以函数
$$g(x)$$
 在 $\left(0,e^{-\frac{1}{2}}\right)$ 上单调递减,在 $\left(e^{-\frac{1}{2}},+\infty\right)$ 上单调递增.

因为
$$x \to 0^+$$
时, $g(x) \to 0$, 且 $g(1) = 0$,

要使函数
$$f(x)$$
 有两个零点, 必有 $-\frac{1}{2e} < k < 0$.

再证明 $x_1 + x_2 > 2\sqrt{-2k}$:

【方法 1】因为 x_1 , x_2 是函数 f(x)的两个零点,不妨设 $x_1 < x_2$, $\diamondsuit x_2 = tx_1$, 则t > 1.

所以
$$\begin{cases} \ln x_1 - \frac{k}{x_1^2} = 0, \\ \ln x_2 - \frac{k}{x_2^2} = 0, \end{cases}$$
 即 $\ln x_2 - \ln x_1 = \frac{k}{x_2^2} - \frac{k}{x_1^2}.$ ……8 分

所以
$$\ln t = \frac{k}{t^2 x_1^2} - \frac{k}{x_1^2}$$
,即 $x_1^2 = \frac{k}{\ln t} \left(\frac{1}{t^2} - 1 \right)$, $-\frac{1}{2e} < k < 0$, $t > 1$.

$$\text{ If } \text{ if } x_1^2 \left(1 + t \right)^2 > -8k \;, \; \; \text{ If } \text{ if } \frac{k}{\ln t} \left(\frac{1}{t^2} - 1 \right) \! \left(1 + t \right)^2 > -8k \;.$$

因为
$$-\frac{1}{2e} < k < 0$$
,所以即证 $\left(\frac{1}{t^2} - 1\right) (1+t)^2 < -8 \ln t$,

数学(理科)答案A 第9页共15页

设
$$h(t) = 8 \ln t + \left(\frac{1}{t^2} - 1\right) (1+t)^2, \quad t > 1.$$

$$\mathbb{R}^{n} h(t) = 8 \ln t - t^{2} - 2t + \frac{2}{t} + \frac{1}{t^{2}}, \quad t > 1.$$

所以
$$h'(t) = \frac{8}{t} - 2t - 2 - \frac{2}{t^2} - \frac{2}{t^3} = \frac{-2(t^2 - 1)^2 - 2t(t - 1)^2}{t^3} < 0$$
.

【用其他方法判断 h'(t) < 0 均可,如令分子为u(t),通过多次求导判断】

所以
$$h(t) = 8 \ln t + \left(\frac{1}{t^2} - 1\right) (1 + t)^2 < h(1) = 0, t > 1.$$

【方法 2】因为 x_1 , x_2 是函数 f(x)有两个零点,不妨设 $x_1 < x_2$, 令 $x_2 = tx_1$,则 t > 1.

所以
$$\begin{cases} \ln x_1 - \frac{k}{{x_1^2}} = 0, \\ \ln x_2 - \frac{k}{{x_2^2}} = 0, \end{cases}$$
 即 $\ln x_2 - \ln x_1 = \frac{k}{{x_2^2}} - \frac{k}{{x_1^2}}.$ ……8 分

所以
$$\ln t = \frac{k}{t^2 x_1^2} - \frac{k}{x_1^2}$$
,即 $x_1^2 = \frac{k}{\ln t} \left(\frac{1}{t^2} - 1 \right)$, $-\frac{1}{2e} < k < 0$, $t > 1$.

即证
$$tx_1^2 > -2k$$
,即证 $t \times \frac{k}{\ln t} \left(\frac{1}{t^2} - 1 \right) > -2k$.

设
$$h(t) = 2 \ln t - t + \frac{1}{t}$$
,

$$\mathbb{N} h'(t) = \frac{2}{t} - 1 - \frac{1}{t^2} = -\frac{\left(t - 1\right)^2}{t^2} < 0 \; , \quad t > 1 \; .$$

数学 (理科) 答案 A 第 10 页 共 15 页

所以
$$h(t) = 2 \ln t - t + \frac{1}{t} < h(1) = 0$$
.

【方法3】因为 x_1 , x_2 是函数 f(x)有两个零点, 不妨设 $x_1 < x_2$, 令 $x_2 = tx_1$, 则t > 1.

所以
$$\begin{cases} \ln x_1 - \frac{k}{x_1^2} = 0, \\ \ln x_2 - \frac{k}{x_2^2} = 0. \end{cases}$$
 即 $\ln x_1 + \ln x_2 = \frac{k}{x_1^2} + \frac{k}{x_2^2}. \dots 8 分$

只需证 $\ln x_1 + \ln x_2 > \ln(-2k)$

$$\mathbb{P} \, \text{iff} \, \frac{k}{x_1^2} + \frac{k}{x_2^2} > \ln \left(-2k \, \right), \ \ \mathbb{P} \, \text{iff} \, \frac{k}{x_1^2} + \frac{k}{t x_1^2} > \ln \left(-2k \, \right).$$

所以
$$k \left(1 + \frac{1}{t^2}\right) \frac{1}{x_1^2} > k \left(1 + \frac{1}{t^2}\right) \times \frac{1}{-2k} = -\frac{1}{2} \left(1 + \frac{1}{t^2}\right) > -\frac{1}{2} \left(1 + 1\right) = -1$$
 .

$$\overline{m} \ln \left(-2k\right) < \ln \frac{1}{e} = -1,$$

所以
$$k\left(1+\frac{1}{t^2}\right)\frac{1}{x_1^2} > \ln\left(-2k\right)$$
成立.

【方法 4】因为 x_1 , x_2 是函数 f(x)有两个零点, 不妨设 $x_1 < x_2$, 令 $x_2 = tx_1$, 则 t > 1.

由已知得
$$\begin{cases} \ln x_1 - \frac{k}{x_1^2} = 0, \\ \ln x_2 - \frac{k}{x_2^2} = 0, \end{cases}$$
 即 $\ln x_2 - \ln x_1 = \frac{k}{x_2^2} - \frac{k}{x_1^2}.$

先证明
$$\frac{\ln x_2 - \ln x_1}{x_2 - x_1} < \frac{1}{\sqrt{x_1 \, x_2}}$$
,即证明 $\ln t < \frac{t - 1}{\sqrt{t}} \left(t > 1 \right)$.

数学 (理科) 答案 A 第 11 页 共 15 页

数学(理科)答案A 第 12 页 共 15 页

数学(理科)答案A 第 14 页 共 15 页

(2) 解法 1: 由
$$f(x) < \frac{1}{2} f(x+1)$$
, $|2x-1| - a < \frac{1}{2} |2x+1| - \frac{a}{2}$.

则问题等价于 $a > (g(x))_{min}$

因为
$$g(x) = \begin{cases} -2x+3, & x < -\frac{1}{2}, \\ -6x+1, & -\frac{1}{2} \le x \le \frac{1}{2}, \end{cases}$$
 9分

$$g(x)_{\min} = g\left(\frac{1}{2}\right) = -2.$$

数学 (理科) 答案 A 第 15 页 共 15 页

自主招生在线创始于 2014 年,是专注于自主招生、学科竞赛、全国高考的升学服务平台,旗下拥有网站和微信两大媒体矩阵,关注用户超百万,用户群体涵盖全国 90%以上的重点中学老师、家长和考生,引起众多重点高校的关注。

如需第一时间获取相关资讯及备考指南,请关注**自主招生在线**官方微信号:zizzsw。

微信扫一扫,快速关注