2022~2023 学年第二学期高二年级期中质量监测

物理参考答案及评分建议

一、单项选择题:本题包含 10 小题,每小题 3 分,共 30 分。

题号	1	2	3	4	5	6	7	8	9	10
选项	В	Α	Α	D	В	D	D	С	В	D

二、多项选择题:本题包含5小题,每小题3分,共15分。

						XIE KE IS	
题号	11	12	13	14	15		
选项	BD	BD	AC	ACD	BD		
三、实验题: 共 14 分。 16. (6 分) (1) $T^2 = 4\pi^2 LC$ (2 分)							
$\begin{array}{c} 1 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \end{array}$	/(×10 ⁻⁸ s	3 ²)	4	<i>C/</i> (×10	→ 0 ⁻⁷ F)	(2分)	
(3) 28	.2mH	(27.3m	nH∼29.	0mH)	(2 分)		
17. (83 (1) 红 四、计 18. (85	, (4 分 章题:共 计)) (2 341 分。) 400 (4分)			

(1)根据几何关系可知离子在磁场中的运动半径为

$R-R\cos 60^{\circ} = \frac{L}{2}$	(1分)
R=L	
$qU = \frac{1}{2}mv_0^2 \cdots$	(1分)
根据 $qv_0 B = \frac{mv_0^2}{L}$	(1分)
可得: $\frac{q}{m} = \frac{2U}{B^2 L^2}$	(1分)
$(2)t = \frac{T}{6} \cdots$	(1分)
$T = \frac{2\pi L}{v_0}$	(1分)
可得: $t = \frac{\pi B L^2}{6U}$	(2分)
(1) 由图乙可知 $t = 0.01s$ 时刻 $\frac{\Delta B}{\Delta t} = 4T/s$	(1分)
根据法拉第电磁感应定律得 $P = n \frac{\Delta \Phi}{\Delta T} = n \frac{S \Delta B}{\Delta t}$	(1分)
代入数据解得: E = 1 V·····	(1分)
(2) $0 \sim 0.02s$ 内根据闭合电路欧姆定律可以得到 $= \frac{E}{R+r} = 0.1A$	(1分)
根据焦耳定律可以得到	
R 上产生的焦耳热为: $Q_1 = I^2 R t_1 = 1.8 \times 10^{-3} J$	(1分)
$0.02 \sim 0.03s$ 内,同理可以得到: $E' = 2.0V$, $I' = 0.2A$	
根据焦耳定律可以得到	
R 上产生的焦耳热为: $Q_2 = I^2 R t_2 = 3.6 \times 10^{-3} J$	(1分)
所以 $Q_{\vec{B}} = Q_1 + Q_2 = 5.4 \times 10^{-3}$ J·····	(1分)
(3)0~0.025s内,根据法拉第电磁感应定律得 $E = n \frac{\Delta \Phi}{\Delta T} = n \frac{S \Delta B}{\Delta t}$	
根据闭合电路欧姆定律可以得到: $I = \frac{E}{R+r}$	
电荷量 $q = I\Delta t$	(1分)
代入数据可以解得: $q = 1.0 \times 10^{-3}$ C·····	(2分)

(1)粒子一定做匀速直线运动	(1分)
$q v_0 B = qE$	(2分)
$E=B v_{\theta}$	(1分)
方向与 x 轴负向夹角为 60°斜向左下	(1分)
(2)粒子做类平抛运动,等效高度 y',等效射程 x'	
$tg60^{\circ} = \frac{y'}{x'}$	(1分)
$y' = \frac{1}{2} \frac{Eq}{m} t^2$	(1分)
$x' = v_0 t$	(1分)
$t = \frac{2\sqrt{3}m}{Bq} \qquad \cdots \qquad $	(1分)
$y' = \frac{6mv_0}{Bq} \qquad x' = \frac{2\sqrt{3}mv_0}{Bq} \qquad \qquad$	(1分)
$y_B = \frac{4\sqrt{3}mv_0}{Bq}$	
B 点坐标(0 , $-\frac{4\sqrt{3}mv_0}{Bq}$	(1分)
20B. (11分)	
(1)做匀速直线运动	(2分)
$E_{min}q = \text{mgsin30}^\circ$, $E_{min} = \frac{mg}{2q}$	(2分)
方向与 y 轴正方向夹角为 60°斜向左上。	(1分)
(2) 小球做类平抛运动,等效高度 y',等效射程 x'	
$tg60^\circ = \frac{y'}{x'}$ $y' = \frac{1}{2} \frac{F_{\#}}{m} t^2 F_{\#} = mg\cos 30^\circ x' = v_0 t$	(2分)
$t = \frac{4v_0}{g} \cdots$	(1分)
$y' = \frac{4\sqrt{3}v_0^2}{g}$ $x' = \frac{4v_0^2}{g}$	(2分)
$y_B = \frac{8v_0^2}{g}$	
B 点坐标(0 , $-\frac{8v_0^2}{g}$)	(1分)
21A. (12分)	
解析: (1) 由机械能守恒: $mgh = \frac{1}{2}mv^2$	(1分)
E = Blv	(1分)

$I = \frac{E}{R} \cdots \qquad \cdots$	(1分)
BIl - mg = ma	(1分)
得 $a = \frac{B^2 l^2 \sqrt{2gh}}{mR} - g$	(1分)
(2) $q = I \Delta t$	(1分)
$\overline{I} = \frac{\overline{E}}{R}$	(1分)
$\overline{E} = \frac{\Delta \phi}{\Delta t}$	(1分)
$\Delta \Phi = Bl^2 \qquad \cdots \qquad $	(1分)
得 $q = \frac{Bl^2}{R}$	(1分)
(3) 由能量守恒: $\frac{1}{2}mv^2 - \frac{1}{2}m(\frac{3}{4}v)^2 + mgl = Q$	(1分)
得 $Q = mg(\frac{7}{16}h+l)$	(1分)
21B.(12分)	
解析:(1)线框在上升阶段离开磁场到最大高度的过程中,	
由动能定理: $-(mg+f)h=0-\frac{1}{2}mv^2$	(2分)
解得: $v = \sqrt{\frac{2(mg+f)h}{m}}$	(1分)
(2) 由题意知,线框在上升阶段刚进入磁场的速度为 2v。	
E = 2Blv	(1分)
$I = \frac{E}{R}$	(1分)
mg + f + IlB = ma	(2分)
解得 $a = g + rac{f}{m} + rac{2B^2 l^2 \sqrt{rac{2(mg+f)h}{m}}}{mR}$	(2分)
(3) 由能量守恒: $\frac{1}{2}m(2\nu)^2 - \frac{1}{2}m\nu^2 = 2mgl + 2fl + Q$	(2分)
解得 $Q = (mg + f) (3h - 2l)$ ······	(1分)