第31届中国化学奥林匹克(初赛)试题及解答

- 第1题 (10分) 根据条件书写化学反应方程式。
- 1-1 工业上用碳酸氢铵和镁硼石[Mg2B2O4(OH)2]在水溶液中反应制备硼酸。
 - 1-1 $Mg_2B_2O_4(OH)_2 + 2NH_4^+ + 2HCO_3 \rightarrow 2H_3BO_3 + 2NH_3 + 2MgCO_3$ $\# Mg_2B_2O_4(OH)_2 + 2NH_4HCO_3 \rightarrow 2H_3BO_3 + 2NH_3 + 2MgCO_3$ $Mg_2B_2O_4(OH)_2 + NH_4^+ + HCO_3^- + 2H_2O \rightarrow 2H_3BO_3 + NH_3 + Mg_2(OH)_2CO_3$
- 1-2 从乏燃料提取钚元素的过程中,利用亚硝酸钠在强酸溶液中将 Pu^{3+} 氧化为 Pu^{4+} ,放出笑气。

1-2 $4Pu^{3r} + 2NO_2^{-r} - 6H^{-r} \rightarrow 4Pu^{4r} + N_2O + 3H_2O$ $r_{c}^{R} + 4Pu^{2r} - 2HNO_{c} + 4H^{-r} + 4Pu^{2r} - N_3O + 3H_3O$

- 1-3 NaBH₄与氯化镍(摩尔比 2:1)在水溶液中反应,可得到两种硼化物:硼化镍和硼酸(摩尔比 1:3)。
 - 1-3 8 BH₄ + 4 Ni² +18 H₂O \rightarrow 2 Ni₂B + 6 H₃BO₃ + 25 H₂ ± 2 8 NaBH₄ + 4 NiCl₂+18 H₂O \rightarrow 2 Ni₂B + 6 H₃BO₃ + 25 H₂ + 8NaCl
- 1-4 通过 $KMnO_4$ 和 H_2O_2 在 KF-HF 介质中反应获得化学法制 F_2 的原料 K_2MnF_6 。
 - 1-4 **2KMnO**₄ + **3H**₂O₂ + 2KF 10HF \rightarrow 2K₂MnF₆ 8 H₂O + 3 O₂ 或 2K**MnO**₄ + 3H₂O₂ + 2KHF₃ + 8HF \rightarrow 2K₂MnF₆ + 8 H₂O + 3 O₂ 4K⁺ + 2MnO₄⁻ + 3H₂O₂ + 2HF₂⁻ + 8HF \rightarrow 2K₂MnF₆ + 8 H₂O + 3 O₂
- 1-5 磷化氢与甲醛的硫酸溶液反应,产物仅为硫酸磷(盐)。

1-5 $2PH_3+8CH_2O+H_2SO_4 \rightarrow [P(CH_2OH)_4]_2SO_4$

第2题 (10分)

- **2-1** 氨晶体中, 氨分子中的每个 H 均参与一个氢键的形成。N 原子邻接几个氢原子? 1 摩尔固态氨中有几摩尔氢键? 氨晶体融化时固态氨是下沉还是漂浮在液氨的液面上?
- **2-2** P_4S_5 是个多面体分子,结构中的多边形虽非平面状,但仍符合欧拉定律,两种原子成键后价层均满足 8 电子,S 的氧化数为-2。画出该分子的结构图(用元素符号表示原子)。

2-1 6 3 **康尔** 下沉。

- **2-3** 水煤气转化反应 [CO (g) + H₂O (g) \rightarrow H₂(g) + CO₂(g)]是一个重要的化工过程。已知如下键能(BE)数据: BE(C=O) = 1072 kJ mol⁻¹, BE(O-H)=463 kJ mol⁻¹, BE(C=O) = 799 kJ mol⁻¹, BE(H-H) = 436 kJ mol⁻¹。估算反应热。该反应低温还是高温有利?简述理由。

1

2-4 硫粉和 S^2 -反应可以生成**多**硫离子。在 $10\,$ mL S^2 -溶液中加入 $0.080\,$ g 硫粉,控制条件使硫粉完全反应,检测到溶液中最大聚合**度**的多硫离子是 S_3^2 -且 S_n^2 - $(n=1,\,2,\,3,\,\cdots)$ 离子浓度之比符合等比数列 $1,\,10,\,\cdots,\,10^{n-1}$ 。若不考虑其他副反应,计算反应后溶液中 S^2 -的浓度 c_1 和其起始浓度 c_0 。

```
2-4
c_1+10 \ c_1+100 \ c_1=c_0
10 \ c_1+2\times 100 \ c_1=0.080/32 \ \text{mol } / \ 0.010 \ \text{L}=0.25 \ \text{mol } \text{L}^{-1}
c_1=1.2\times 10^{-3} \ \text{mol } \text{L}^{-1}
c_0=0.13 \ \text{mol } \text{L}^{-1}
```

- **第 3 题 (12 分)** 在金属离子 M^{3+} 的溶液中,加入酸 H_m **X**, 控制条件,可以得到不同沉淀。pH<1,得到沉淀 $A(M_2X_x \cdot yH_2O, y<10)$; pH>7,得到沉淀 B[MX(OH)]。A 在空气气氛中的热重分析显示,从 30° C 升温至 100° C 失重 11.1° 6,对应于失去 5 个结晶水(部分);继续加热至 300° C,再失重 31.2° 6,放出无色无味气体,残留 物为氧化物 M_2O_3 6。 B 在氮气气氛中加热至 300° C 总失重 29.6° 6。
- 3-1 通过计算,指出 M 是哪种金属,确定 A 的化学式。
- 3-2 写出 A 在空气中热解的反应方程式。
- 3-3 通过计算,确定 B 在 N_2 气氛中失重后的产物及产物的定量组成(用摩尔分数表示)。
- 3-4 写出 B 在氮气气氛中分解的反应方程式。

3-1

 $M(A) = 5 \times 18.0 / 11.1\% = 811 (g mol^{-1})$

A 总失重 42.3% · M₂O₃ 占 57.7%。

 M_2O_3 的摩尔质量: 811 (g mol 1) × 57.7 % = 468 (g mol 1)

M 的摩尔质量: (468 - 3×16.0) /2 = 210 (g mol 1)

M为Bi

X 为二价阴离子, x=3

A 的化学式同写为 Bi₃X₃。(か5)H₂O

 $2 \times 209 + 3 M(X) + 5 \times 18.0 + n \times 18.0 = (209 \times 2 + 3 \times 16.0) / 0.577 = 808$

 $3 M(X) + n \times 18.0 = 300$

n=2, M(X) = 88.0

 CO_3^2 的式量为 60; $C_2O_4^2$ 的式量为 88.02, 应该是草酸根, n=2。

A 的化学式为: Bi₂(C₂O₄)₃•7H₂O

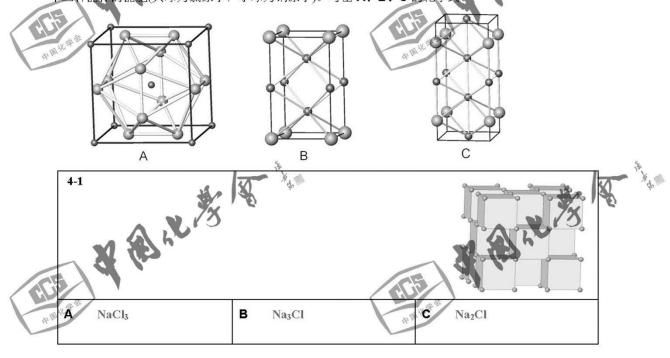
- 3-2 $2\text{Bi}_2(\mathbf{C_2O_4})_5 \cdot 7\text{H}_2\text{O} + 3\text{O}_2 \rightarrow 2\text{Bi}_2\text{O}_5 + 12\text{CO}_2 + 14\text{H}_2\text{O}_2$
- 3-3 B 为 Bi(C₂O₄)(OH)。摩尔质量 209.0÷12.01×2+16.00×5÷1.01= 314.0 (g mof⁻¹)

B 在氦气气泵中总失道 29.6%、贮必有 Bi 产生。设失重后残留物总组成为 BiO、

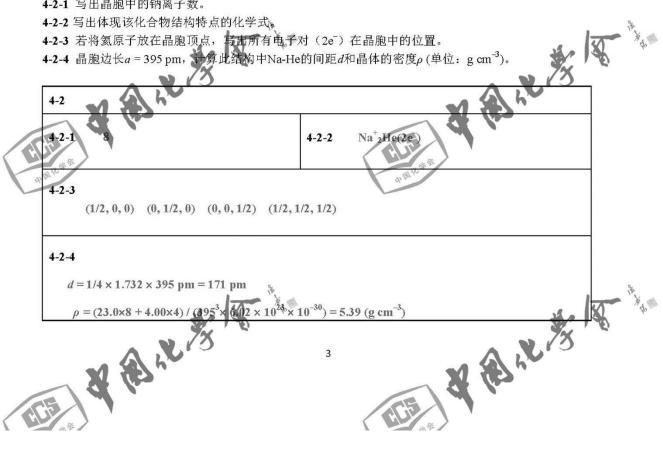
 $209.0 \pm 16.00x = 314.0 \times (1-0.296)$

x = 0.754

产物由 Bi 和 Bi₂O₃组成,设二者的廖尔比为 $_{\rm F}$,产物的总组成可以写为"Bi_(2-p)O₃" $_{\rm 3/(2+p)}=0.754, \quad p=1.98\simeq 2.$


故产物中 Bi 和 Bi₂O₃的摩尔分数分别为 0.66 和 0.34

3-4 $4\text{Bi}(C_2O_4)(OH) = 2\text{Bi} + \text{Bi}_2O_3 + 7\text{CO}_2 + \text{CO} + 2\text{H}_2\text{O}$


第4题 (10分) 随着科学的发展和大型实验装置(如同步辐射和中子源)的建成,高压技术在物质研究中

发挥着越来越重要的作用。高压不仅会引发物质的相变,也会导致新类型化学键的形成。近年来 关于超高压下新型晶体的形成与结构的研究报道。

4-1 NaCl 晶体在 $50\sim300$ GPa 的高压下和 Na 或 Cl_2 反应,可以形成不同组成、不同结构的晶体。下图给出其 中三种晶体的晶胞(大球为氯原子,小球为钠原子)。写出 A、B、C 的化学到

- 4-2 在超高压(300GPa)下,金属钠和氦可形成化合物。结构中,钠离子按简单立方排布,形成 Nag立方体空 隙(如右图所示), 电子对(2e)和氦原子交替分布填充在立方体的中心。
- 4-2-1 写出晶胞中的钠离子数。
- 4-2-2 写出体现该化合物结构特点的化学式。
- 4-2-3 若将氦原子放在晶胞顶点,与此所有电子对(2e⁻)在晶胞中的位置。
- **4-2-4** 晶胞边长 $a=395\,\mathrm{pm}$,计算此结构中Na-He的间距d和晶体的密度 ρ (单位: g cm⁻³)。

第 5 题 (10 分)由元素 X 和 Y 形成的化合物 A 是一种重要的化工产品,可用于制备润滑剂、杀虫剂等。A 可由生产 X 单质的副产物 FeP2 与黄铁矿反应制备,同时得到另一个二元化合物 B。B 溶于稀硫酸放出气体 C, 而与浓硫酸反应放出二氧化硫。C 与大多数金属离子发生沉淀反应。纯净的 A 呈黄色, 对热稳定, 但 遇潮湿空气极易分解而有臭鸡蛋味。 A 在乙醇中发生醇解,得到以 X 为单中心的二酯化合物 D 并放出气体 C, D与Cla反应生成制备杀虫剂的原料 E、放出刺激性的酸性气体 F并得到 Y 的单质(产物的摩尔比为 1:1:1)。 A 与五氧化二磷混合加热,可得到两种与 A 结构对称性相同的化合物 G1 和 G2。

- 5-1 写出 A、C 到 F 以及 G1 和 G2 的分子式。
- 5-2 写出由生产 X 单质的副产物 FeP2 与黄铁矿反应制备 A 的方程式。
- 5-3 写出 B 与浓硫酸反应的方程式。

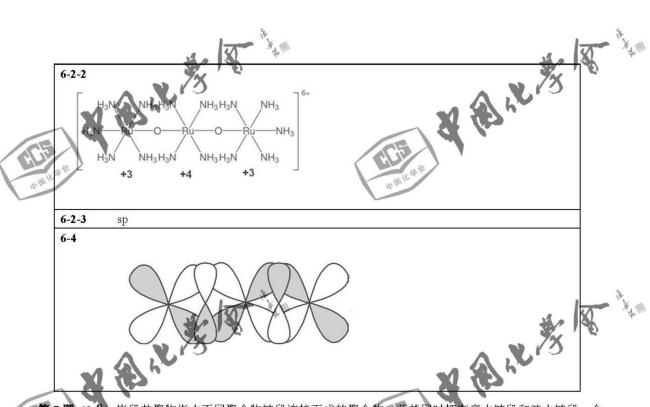
5-1		
Α	С	D S=P(OC ₂ H ₅) ₂ SH
P_4S_{10}	H ₂ S	
E S=P(OC ₂ H ₅) ₂ C1	F	G1和G2
	HCI	P ₄ S ₆ O ₄ , P ₄ S ₄ O ₆
5-2 21	$eP_2 + 12 FeS_2 \rightarrow P_4 S_{10} + 14 FeS$	
5-3 21 e	$\mathbf{S} + 10 \Pi_2 \mathbf{SO}_4 (\mathbf{液}) \rightarrow \mathbf{Fe}_2 (\mathbf{SO}_4)_3 + \mathbf{Fe}_2 (\mathbf{SO}_4)_4 + \mathbf{Fe}_2$	+ 9SO ₂ + 10H ₂ O

第6题 (12分) 钌的配合物在发光、光电、催化、生物等领域备受关注。

6-1 研究者制得一种含混合配体的 Ru(II)配合物[Ru(bpy),(phen)3-,](ClO4)2 (配体结构如下图)。元素分析结果 给出 C、H、N的质量分数分别为 48.38%、3.06%、10.54%。磁性 测量表明该配合物呈抗磁性。

- 6-1-1 推算配合物化学式中的n 值。
- 6-1-2 写出中心钌原子的杂化轨道类型。

phen


bpv

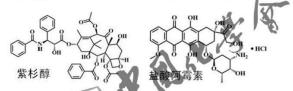
当n=1 时,C:H:N=34:24:6; 当n=2 时,C:H:N=32:24:6 元意分析结果: (::11:\ =(48.38÷12.01):(3.06÷1.01):(10.54÷14.01) $\approx 32:24:6.$ n=2

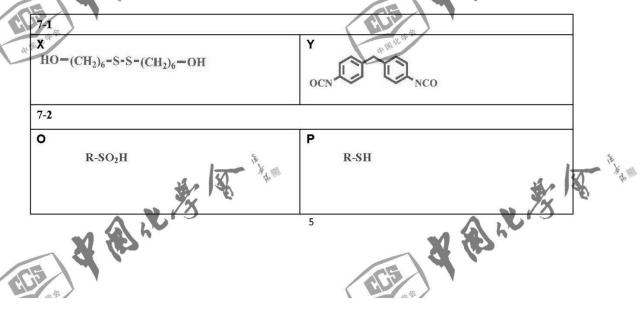
 d^2sn^3 6-1-2

- 6-2 利用显微镜观察生物样品时,常用到一种被称为"钌红"的染色剂。钌红的化学式为[Ru₃O₂(NH₃)₁₄]Cl₆, 由[Ru(NH₃)₆]Cl₃的氨水溶液暴露在空气中形成。钉红阳离子中三个钉原子均为6配位且无金属-金属键。
- 6-2-1 写出生成钉红阳离子的反应方程式。
- 6-2-2 画出钉红阳离子的结构式并标出每个钌的氧化态。
- 6-2-3 写出钉红阳离子中桥键原子的杂化轨道类型。
- 6-2-4 经测定, 钉红阳离子中 Ru-O 键长为 187 pm, 远小于其单键键长。对此, 研究者解释为: 在中心原子 和桥键原子间形成了两套由 d 和 p 轨道重叠形成的多中心 π 键。画出多中心 π 键的原子轨道重叠示意图。

6-2-1 $12[Ru(NH_3)_6]^{3+} + O_2 + 6H_2O \rightarrow 4[Ru_3O_2(NH_3)_{14}]^6 + 12NH_4 + 4NH_3$

第7题 (6分) 嵌段共聚物指由不同聚合物链段连接而成的聚合物。若其同时拥有亲水链段和疏水链段,会形成内部为疏水链段、外部为亲水链段的核-壳结构组装体(如胶束)。下图所示为一种 ABA 型嵌段共聚物,该嵌段共聚物在水中可以形成胶束并包载药物分子,在氧化或还原条件的刺激下,实现药物的可控释放。


$$CH_3 \not\leftarrow OCH_2CH_2 \not\downarrow_{n} \not\leftarrow O \xrightarrow{Q} \bigvee_{H} O \xrightarrow{Q} O \xrightarrow{CH_2)_6} -S - S - (CH_2)_6 \not\downarrow_{m} O \xrightarrow{Q} \bigvee_{H} O \xrightarrow{Q} CH_2CH_2O \not\downarrow_{n} CH_3$$


ABA 型三嵌段共聚物

7-1 该共聚物的合成方法如下: 先使单体 X 与稍过量的单体 Y 在无水溶剂中进行加成聚合反应,形成中部的聚氨酯链段,随后加入过量聚乙二醇单甲醚 $CH_3(OCH_2CH_2)_nOH$ 进行封端。写出单体 X 与 Y 的结构式。

7-2 在氧化或还原条件下二硫键可发生断裂。采用 R-S-S-R 简式,写出其断键后的氧化产物 O 和还原 产物 P。

7-3 该嵌段共**聚物**所形成的胶束可以包载右图中哪种抗癌药物?简述理由。

7-3

紫杉醇。 紫杉醇为疏水分子

第8题 (13分)

8-1 判断以下分子是否有手性。

1	2	3	4	5
CH ₂ OH HO → H HO → H H → OH H → OH CH ₂ OH	COOEt		\sum_{\circ}	Br

8-1	20000		200	
1	2	3	4	5
有	有	有	有	无

8-2 画出以下反应所得产物的立体结构简式,并写出反应类型(S_N1 或 S_N2)。

反应	原料	反应试剂	产物	反应类型
1	H ₃ CO ₂ SQ OSO ₂ CH ₃	H ₂ S/KOH		
2		K ₂ CO ₃		
3	H, Br ,H	H ₂ O		
4	O."(CI	CH₃OH		

8-2		
反应	产物	反应类型
1	s distribution of the state of	$S_{ m N}2$

第9题 (10分) 画出以下转换的中间体和产物(A~E)的结构简式。

元素分析结果表明化合物 E 含 C, 64.84%; H, 8.16%; N, 12.60%。化合物 B 不含羟基。

第 10 题 (7 分)影响有机反应的因素较多。例如,反应底物中的取代基不同往往会使反应生成不同的产物。

$$\begin{array}{c} O & OII \\ OH \\ + & O \end{array} \begin{array}{c} \uparrow \\ O \\ \hline CH_3CN, \, rt, \, 20 \; h \end{array}$$

10-1 当 R = CH₃ 时,产物为 **A**,分子式为 C₁₅H₁₂O₄。研究表明 **A** 不含羟基,它的 ¹H NMR (CDCl₃,ppm): δ 1.68 (3H), 2.73-2.88 (2H), 3.96-4.05 (2H), 5.57 (1H), 7.72-8.10 (4H)。画出 **A** 的结构简式。提示: δ 不同,氢的化学环境不同。

10-2 当 R = Ph 时,产物为 B,分子式为 $C_{20}H_{14}O_4$ 。研究表明 B 含有一个羟基,它的 1 H NMR (CDCl₃, ppm): δ 2.16 (1H), 3.79 (1H), 4.07 (1H), 5.87 (1H), 6.68 (1H), 7.41-7.77 (5H), 7.82-8.13 (4H)。画出 B 的结构简式;解释生成 B 的原因。

10-3 当 R = OEt 时,产物为 C,分子式为 $C_{14}H_{10}O_5$ 。参照以上实验结果,画出 C 的结构简式。

郑重声明:本试题及答案版权属中国化学会所有,未经中国化学会化学竞赛负责人授权,任何人不得翻印,不得在出版物或互联网网站上转载、贩卖、赢利,违者必究。本试题和相应答案将分别于2017年8月27日14:00和9月3日14:00在www.chemsoc.org.cn网站上公布。

8

更多竞赛、自主招生、新高考相关资讯,请关注自主招生在线官方微信号: zizzsw。

