沈阳二中 2022-2023 学年度下学期第五次模拟考试

高三(23届)化学试题

命题人: 高三化学组 审校人: 高三化学组

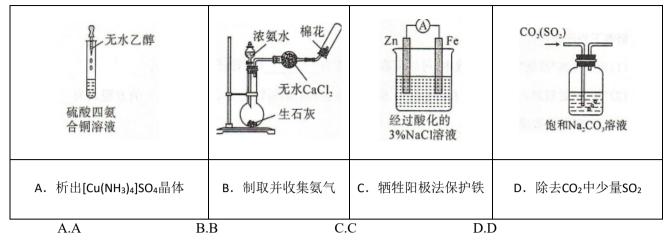
说明: 1.测试时间: 75 分钟 总分: 100 分

2.客观题涂在答题纸上, 主观题答在答题纸的相应位置上

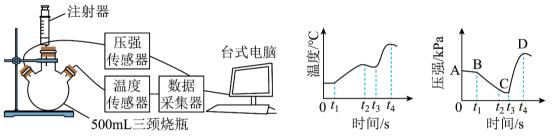
可能用到的相对原子质量 H:1 C:12 O:16 F:19 Na:23 Al:27 S:32 Cl:35.5 Ca:40 Cr:52 Fe:56 Cu:64 Zn:65 Pb:207

第1卷(45分)

- 一、选择题(本题包括 15 小题,每小题 3 分,共 45 分,每小题只有一个选项符合题意)
- 1. 化学与生产、生活密切相关,下列说法不正确的是
- A. 山梨酸钾和苯甲酸钠均可用作食品添加剂
- B. 移动通讯的核心部件芯片的主要成分是共价晶体
- C. 太阳能、风能、地热能、氢能、海洋能均为新能源
- D. 市售食用油中加入微量叔丁基对苯二酚作氧化剂,以确保食品安全
- 2. 下列化学用语或说法正确的是
- A. Cu位于周期表d区
- B. 芒硝化学式: Na,SO₄·10H,O

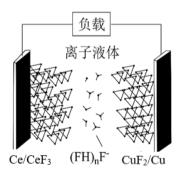

$H \times + \cdot \ddot{O} \cdot + \times H \longrightarrow H \star \ddot{O} \star H$

- C. 用电子式表示H,O的形成过程:
- D. PH, 的VSEPR模型名称: 三角锥形
- 3. 用 $N_{\rm A}$ 表示阿伏加德罗常数的值,下列说法正确的是
- A. $100g46\%C_3H_5OH$ 的水溶液中采取 sp^3 杂化的原子数目为 $6N_3$
- B. 0.1mol乙醇和0.2mol乙酸发生酯化反应,最多可生成乙酸乙酯分子数为0.1N。
- C. 标准状况下, $5.6LCO_2$ 中所含 σ 键的数目为 $0.25N_A$
- D. 常温下,将2.7g铝片投入足量的浓硫酸中,铝失去的电子数为 $0.3N_{\Lambda}$
- 4. 下图为合成药物M工艺过程中的某一步转化关系(反应条件已省略)。

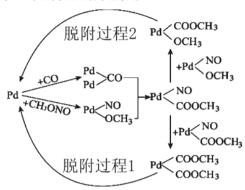

下列说法正确的是

- A. 上述反应为取代反应, 生成物有化合物丙和乙酸
- B. 化合物甲分子中含有4个手性碳原子
- C. 化合物甲和化合物丙均含有的官能团为氨基、酰胺基和羧基
- D. 丙在一定条件下可以分别与氢氧化钠水溶液、盐酸以及氢气发生反应

5.下列实验装置和操作均正确的是



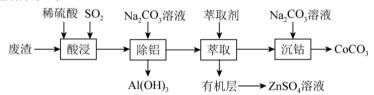
6. 某实验小组要定量探究铁锈蚀的因素,设计如图所示实验装置,检查气密性,将5 g铁粉和2 g碳粉加入三颈烧瓶, t_1 时刻,加入2 mL饱和氯化钠溶液后,再将一只装有5 mL稀盐酸的注射器插到烧瓶上,采集数据。下列说法错误的是


- A.铁发生锈蚀的反应是放热反应
- B.t2~t3温度降低是因为反应速率减慢了
- C.BC段压强减小是因为铁和氧气直接反应生成了氧化铁
- D.t3~t4压强变大是因为发生了铁的析氢腐蚀

7.室温氟穿梭可充电电池装置如图所示,负极为 Ce/CeF_3 ,正极为 CuF_2/Cu ,氟氢离子液体(含 H^+ 和 $(FH)_nF^-$,n=2或3)作电解质,已知放电时正极的电极反应式为 $CuF_2+4[(FH)_3F]^-+2e^-=Cu+6[(FH)_2F]^-$,法拉第常数F=96500C/mol。下列说法正确的是

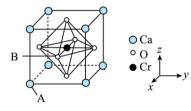
- A. 充电时, (FH)_nF-移向电极 Ce/CeF₃
- B. 以铅蓄电池为该电池充电时,每生成 1mol CeF₃,Pb 极板增重 9.6g
- C. CuF₂/Cu电极每减轻3.8g,该电池输出的电量为4825C
- D. 放电时, 负极发生的电极反应为 Ce+ 9[(FH)₂F] 3e = CeF₃ +6[(FH)₃F]

8.草酸二甲酯($\frac{\mathsf{COOCH_3}}{\mathsf{COOCH_3}}$)是一种重要的化工基本原料,主要用于制药、农药、有机合成,也用作增塑剂。可由CO与亚硝酸甲酯($\mathsf{CH_3ONO}$)在Pd催化剂作用下发生反应: $\mathsf{2CO+2CH_3ONO} \xrightarrow{\mathsf{Pd}} \mathsf{COOCH_3} \mathsf{COOCH_3}$ +2NO,反应的机理如右图所示,下列说法错误的是


- A.催化剂Pd参加了化学反应
- B. CH₃ONO 中氮氧双键在Pd表面断裂

C.脱附过程1生成了草酸二甲酯,脱附过程2生成了副产物碳酸二甲酯(H₂CO—C—OCH₃)

D.增大投料比 [n(CO):n(CH₃ONO)],可提高最终产物中草酸二甲酯的比率


9.X、Y、Z、M、Q五种短周期元素,原子序数依次增大。X只有1个s能级的电子。 YQ_3 是一种平面正三角形分子。Z的p能级电子半充满。M元素焰色试验焰色呈黄色。下列说法不正确的是

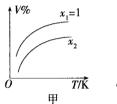
- A. 电负性: Z>Y>Q, 第一电离能: M>Z>Y
- B. YQ3与ZX3能通过配位键化合
- C. Y₃Z₃X₆是分子晶体,结构与苯相似
- D. MYX₄是一种离子化合物,溶于水能放出氢气
- 10. 以含钴废渣(主要成分为CoO和Co₂O₃,含少量Al₂O₃和ZnO)为原料制备锂电池的电极材料CoCO₃的工艺流程如下:

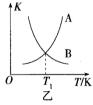
下列说法正确的是

- A. 通入SO₂ 发生反应的离子方程式: 2Co³⁺+SO₂+4OH⁻=2Co²⁺+SO₄²⁻+2H₂O
- B. 前后两次加入Na₂CO₃溶液的目的相同,反应后溶液的pH也相同
- C. 将含Na₂CO₃的溶液缓慢滴加到Co²⁺溶液中沉钴,目的是防止产生Co(OH)₂
- D. 若萃取剂的总量一定,则一次加入萃取比分多次加入萃取效果更好
- 11. 一种可用于配制无机防锈颜料的复合氧化物的晶胞结构如图,下列说法中不正确的是

- A. 该复合氧化物的化学式为CaCrO,
- B. 若图中 A 的原子坐标为(0,0,0),则 B 的原子坐标为(0,0.5,0.5)
- C. 若该晶体密度为 $\rho_{\rm g} \cdot {\rm cm}^{-3}$, 钙和氧的最近距离为 anm,则阿伏加德罗常数 $N_{\rm A} = \frac{140}{\rho \left(\sqrt{2} {\rm a} \times 10^{-7}\right)^3} {\rm mol}^{-1}$
- D. 由晶胞结构可知,与1个钙原子等距离且最近的氧原子有8个

12.已知反应: $A(g) + B(g) \rightleftharpoons C(g) + D(g)$,在一定压强下,按 $x = \frac{n(B)}{n(A)}$ (A的物质的量始

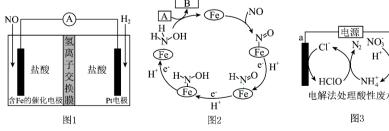

终为 1 mol)向密闭容器中充入 A 气体与 B 气体。图甲表示平衡时,A 气体的体积分数 (V%) 与温度 (T)、x 的关系。图乙表示 x=2 时,正、逆反应的平衡常数与温度的关系。则下列说法正确的是


A.图甲中, $x_2 < 1$

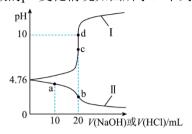
B.图乙中,A线表示正反应的平衡常数

C.由图乙可知, T_1 时,K=1,B的转化率约为33.3%

D.若在恒容绝热装置中进行上述反应,达到平衡时,装置内的气体压强将减小

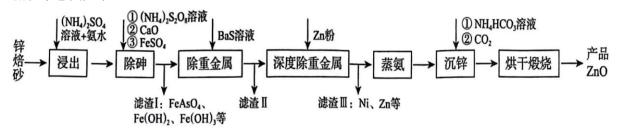


13. 探究硫及其化合物的性质,根据下列方案设计和现象,结论不正确的是


选项	实验方案	现象	结论
A	在过硫化钠(Na ₂ S ₂)中加入稀盐酸	产生淡黄色沉淀和臭鸡蛋气味的气体。	发生歧化反应: Na ₂ S ₂ +2HCl=2NaCl+H ₂ S↑+S↓
В	将电石与饱和食盐水反应产生的 气体通入酸性高锰酸钾溶液	酸性高锰酸钾溶液褪色	说明电石与水反应生成了乙炔
С	燃着的镁条插入盛有SO ₂ 的集气瓶中。冷却后,往集气瓶中加入适量稀盐酸,静置,取少量上层清液于试管中,滴加少量CuSO ₄ 溶液。	剧烈燃烧,集气瓶口有淡黄色固体附着,集气瓶底有白色固体生成。试管中没有产生黑色沉淀	镁能在SO ₂ 中燃烧: 2Mg+SO ₂ = ^{点燃} 2MgO+S
D	已知Fe(SO ₂) ₆ ³⁺ 呈红棕色,将SO ₂ 气体通入FeCl ₃ 溶液中	溶液先变为红棕色,过一段时间 又变成浅绿色。	Fe ³⁺ 与SO ₂ 络合反应速率比氧化还原反应速率快,但氧化还原反应的平衡常数更大。

14. 化学性质类似NH₄Cl的盐酸羟胺(NH₃OHCl)是一种常见的还原剂和显像剂。工业上主要采用图1 所示的方法制备,其电池装置中含Fe的催化电极反应机理如图2所示。图3是用图1的电池电解处理含有(Cl⁻、 NO_3)的酸性废水的装置。下列说法正确的是

- A. 图1电池工作时, Pt电极是正极
- B. 图2中, A为H⁺和e⁻, B为NH₃OH⁺
- C. 电极b接电源负极,处理1 mol NO3, 电路中转移5 mol e
- D. 电池工作时,每消耗2.24 L NO(标准状况下),左室溶液质量增加3.3 g


15. 常温下,向20mL浓度均为0.1mol·L⁻¹的HA与NaA的混合溶液中,分别滴加浓度均为0.1mol·L⁻¹的HCl、NaOH两种溶液,混合溶液的pH变化情况如图所示。下列说法正确的是

- A. 滴加HCl溶液的曲线为I
- B. d点时, $\lg \frac{c(A^{-})}{c(HA)} \approx 5.24$
- C. 水的电离程度: c>b>a
- D. c点溶液中存在: c(Na⁺)=2[c(A⁻)+c(HA)]

第11卷 (55分)


16.(16 分)工业上利用锌焙砂(主要成分为 ZnO,含有少量 CuO 、 As_2O_3 、NiO 等)生产高纯 ZnO 的 流程示意图如下。

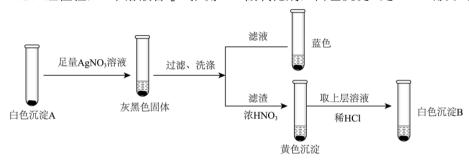
- (1)用足量(NH₄),SO₄溶液和氨水"浸出"锌焙砂。
- ①"浸出"前, 锌焙砂预先粉碎的目的是
- ②通过"浸出"步骤,锌焙砂中的 ZnO 转化为 $[Zn(NH_3)_4]^{2+}$,该反应的离子方程式为____。
- (2)"浸出"时 As_2O_3 转化为 AsO_3^{3-} 。"除砷"步骤①中用(NH₄) $_2S_2O_8$ 作氧化剂,步骤①反应的离子方程式为
- (3)"除重金属"时,加入 BaS 溶液。滤渣II中含有的主要物质是 和 BaSO4。
- (4)"蒸氨"时会出现白色固体 ZnSO4 Zn(OH)2, 运用平衡移动原理解释原因: ______。
- (5)"煅烧"步骤中,不同温度下, $ZnCO_3$ 分解的失重曲线和产品 ZnO 的比表面积变化情况如图 1、图 2 所示。

已知: i. **固体失重质量分数**= 样品起始质量—剩余固体质量 ×100%。

ii. 比表面积指单位质量固体所具有的总面积;比表面积越大,产品 ZnO 的活性越高。

①280℃时煅烧 ZnCO₃, 300 min 后固体失重质量分数为 1/3,则 ZnCO₃ 的分解率为

- ②根据图 1 和图 2,获得高产率($ZnCO_3$ 分解率>95%)、高活性(ZnO 比表面积> $40m^2 \cdot g^{-1}$)产品 ZnO 的最佳条件是 (填字母序号)。
- a. 恒温 280°C, 60~120 min
- b. 恒温 300°C, 240~300 min
- c. 恒温 350°C, 240~300min
- d. 恒温 550℃, 60~120min
- (6)该流程中可循环利用的物质有。
- 17. (12 分) 某小组设计不同实验方案比较 Cu²⁺、Ag⁺的氧化性。


方案一:通过置换反应比较

(1)向酸化的 $AgNO_3$ 溶液插入铜丝,析出黑色固体,溶液变蓝,说明氧化性 $Ag^+>Cu^{2+}$ 。反应的化学方程式是

方案二:通过Cu²⁺、Ag⁺分别与同一物质反应进行比较

实验	试剂		编号及现象
大型	试管	滴管	· 一
	1.0mol/LKI溶液	1.0mol/LAgNO₃溶液	I. 产生黄色沉淀,溶液无色
□ ⊕ 2 mL		1.0mol/LCuSO ₄ 溶液	II. 产生白色沉淀A,溶液变黄

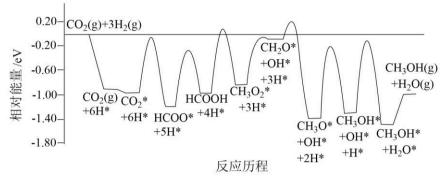
- (2) 经检验, I中溶液不含I₂, 黄色沉淀是。
- (3) 经检验, II中溶液含I₂。推测Cu²⁺做氧化剂, 白色沉淀A是CuI。确认A的实验如下:

- ①检验滤液无 I_2 。溶液呈蓝色说明溶液含有_____(填离子符号);
- ②白色沉淀A与AgNO3溶液反应的离子方程式是 ,说明氧化性Ag+>Cu²⁺。

拓展实验:分析"方案二"中Ag+"未能"氧化I-的原因

设计实验如下: (电极均为石墨,溶液浓度均为1mol/L,b中溶液pH ≈ 4)

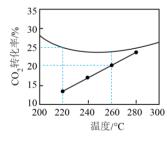
		-
编号	实验1	实验2
实验	KI溶液	A 盐桥 KI溶液 AgNO ₃ 溶液 a b
现象	无明显变化	a中溶液较快变棕黄色,b中电极上析出银; 电流计指针偏转

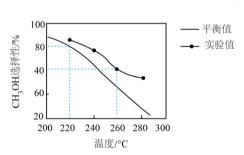

- (4) "实验2" a中溶液呈棕黄色的原因是 (用电极反应式表示)
- (5)结合资料解释"方案二"中 Ag+"未能"氧化 I 的原因: ______

(已知:
$$Ag^+ + I^- = AgI \downarrow K_1 = 1.2 \times 10^{16}$$
: $2Ag^+ + 2I^- = 2Ag \downarrow + I_2 K_2 = 8.7 \times 10^8$)

- 18. (13分) 研究 CO_2 的转化可实现碳的循环利用。在反应器内 CO_2 和 H_2 在催化剂作用下可发生如下反应:
 - I. $CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$ ΔH_1
 - II. $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ $\Delta H_2 = -$

 $\Delta H_2 = +41.2 \text{kJ} \cdot \text{mol}^{-1}$

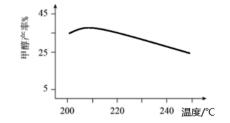

(1) 反应I的历程如图所示,其中吸附在催化剂表面上的物种用*标注。



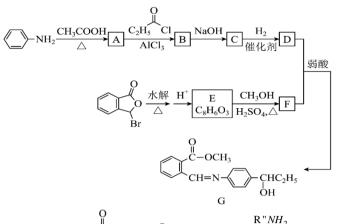
下列说法不正确的是_____

- A. 该反应的 $\Delta H_1 < 0$,能低温自发
- B. 该历程中最小能垒(活化能)步骤的化学方程式为: CH₂O*+OH*+3H*→CH₃O*+OH*+2H*
- C. 催化剂可以降低反应活化能和反应热,但对反应物的转化率无影响
- D. 最后一步是 $CH_3OH(g)$ 、 $H_2O(g)$ 从催化剂表面的解吸过程, $\Delta S<0$
- (2) 若反应II的正、逆反应速率分别表示为 $v_{\mathbb{H}}=k_{\mathbb{H}}c(CO_2)\cdot c(H_2)$, $v_{\mathbb{H}}=k_{\mathbb{H}}$ pk $c(CO)\cdot c(H_2O)$, $k_{\mathbb{H}}$ 、 $k_{\mathbb{H}}$ 分别为正、逆反应速率常数,c为物质的量浓度。pk=-lgk,如图中有表示反应II的正、逆反应速率常数随温度T变化的图像,若A、B、C、D点的纵坐标分别为a+3、a+1、a-1、a-3,则温度 T_1 时反应II的化学平衡常数K=_____。
 - A B D C T₁ T
- (3) 在恒压条件下, CO_2 和 H_2 发生反应 I、反应 II,反应相同时间,测得不 T_1 可温度下 CO_2 的转化率和 CH_3 OH 的选择性如下图中实验值所示。图中平衡值表示相同条件下平衡

状态 CO_2 的转化率和 CH_3OH 的选择性随温度的变化[CH_3OH 的选择性= $\frac{n\left(CH_3OH\right)_{\text{生成}}}{n\left(CO_2\right)_{\text{消耗}}} \times 100\%$]



- ①220°C时,测得反应器出口气体中全部含碳物质的物质的量之比n(CH₃OH): n(CO₂): n(CO) = 1:7.2:0.11,则该温度下CO₂转化率= 。(结果保留1位小数)。
- ②220°C-260°C甲醇的平衡选择性随温度升高而降低的原因可能


是 _____。

- ③260°C时,甲醇产率的实验值是。
- (4) 若只考虑反应I, 在有分子筛膜时甲醇的产率随温度的变化如右图 所示, 其中分子筛膜能选择性分离出H₂O, 甲醇产率先增大后减小的原 因是_______;

请在下图中画出无分子筛膜时甲醇的平衡产率随温度的变化曲线。

19. (14分) 物质G是能阻断血栓形成的药物的中间体,它的一种合成路线如下所示。

已知: i. \bigcirc R Cl R ; ii.R'CHO \rightarrow 弱酸 R'CH=NR";

iii.同一个碳原子上连有两个羟基不稳定,会失水形成羰基。

回答下列问题:

- (1) **NH**₂的名称是______, **NH**₂→A的反应类型是_____。
- (2) B的分子式为C11H13NO2,则C的结构简式为。
- (3)1 $mol\ E$ 分子与新制氢氧化铜完全反应,理论上可以生成 Cu_2O ____mol。写出E生成F的化学方程式。
- (4) W分子比E分子组成多一个 CH_2 ,写出满足下列条件的W的一种结构简式: _____。 i.包含2个六元环,不含甲基
- ii.W可水解, W与NaOH溶液共热时, 1 mol W最多消耗3 mol NaOH