濮阳市一高 2022 级高一下学期第四次质量检测

数学试卷参考答案

一、二、选择题

1	2	3	4	5	6	7	8	9	10	11	12
D	В	С	D	A	С	A	В	BD	AC	BC	AC

8. 解析: Q cos
$$A = 2\sin\left(C - \frac{\pi}{6}\right)\cos B$$
, $\cos A = 2\left(\frac{\sqrt{3}}{2}\sin C - \frac{1}{2}\cos C\right)\cos B$,

$$\nearrow$$
 $A+B+C=\pi$: $\cos A=-\cos(B+C)=-\cos B\cos C+\sin B\sin C$,

$$\therefore -\cos B\cos C + \sin B\sin C = \sqrt{3}\sin C\cos B - \cos C\cos B,$$

$$\exists \sin B \sin C = \sqrt{3} \sin C \cos B ,$$

$$Q \sin C \neq 0, \therefore \tan B = \frac{\sin B}{\cos B} = \sqrt{3}, \quad \forall B \in (0, \pi), \therefore B = \frac{\pi}{3}.$$

由三角形内角和性质知: $\triangle ABC$ 内角均小于 120° ,结合题设易知: P 点一定在三角形的内

再由余弦定理知,
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{1}{2}$$
, $Q b^2 = (a - c)^2 + 6$, $\therefore ac = 6$,

$$\therefore S_{VABC} = \frac{1}{2} |PA| \cdot |PB| \sin \frac{2\pi}{3} + \frac{1}{2} |PB| \cdot |PC| \sin \frac{2\pi}{3} + \frac{1}{2} |PA| \cdot |PC| \sin \frac{2\pi}{3} = \frac{1}{2} ac \sin B = \frac{1}{2} \times 6 \times \sin \frac{\pi}{3} = \frac{3\sqrt{3}}{2}$$

$$\therefore |PA| \cdot |PB| + |PB| \cdot |PC| + |PA| \cdot |PC| = 6.$$

由
$$|PA|\cdot|PB|+|PB|\cdot|PC|+|PA|\cdot|PC|=6$$
等号左右两边同时乘以 $\cos\frac{2\pi}{3}$ 可得:

$$|PA|\cdot |PB|\cos\frac{2\pi}{3} + |PB|\cdot |PC|\cos\frac{2\pi}{3} + |PA|\cdot |PC|\cos\frac{2\pi}{3} = 6\times\cos\frac{2\pi}{3},$$

$$\therefore PA \cdot PB + PB \cdot PC + PA \cdot PC = 6 \times \cos \frac{2\pi}{3} = -3.$$

三、填空题

14.
$$4\sqrt{2}$$

14.
$$4\sqrt{2}$$
 15. $8\sqrt{3}\pi$ 16. $\sqrt{13}$

16.
$$\sqrt{13}$$

四、解答题

17. 解析: (1)::(0.002+0.004+0.014+0.020+0							
$\therefore a = 0.025. \qquad4 \text{分}$							
(2) 平均数为							
$(45 \times 0.002 + 55 \times 0.004 + 65 \times 0.014 + 75 \times 0.020 +$	$85 \times 0.035 + 95 \times 0.025$)×10 = 80.710 分						
18. 解析: (1)由题知 $\vec{a} \cdot \vec{b} = \vec{a} \vec{b} \cos 60^{\circ} = 1$,	1分						
所以 $ 2\vec{a}-3\vec{b} = \sqrt{(2\vec{a}-3\vec{b})^2} = \sqrt{4\vec{a}^2-12\vec{a}\cdot\vec{b}+9\vec{b}^2}$	$=\sqrt{16-12+9}=\sqrt{13}$:						
(2)因为 $\vec{m} \cdot \vec{n} = (\vec{a} + 2\vec{b}) \cdot (2\vec{a} - \vec{b}) = 2\vec{a}^2 + 3\vec{a} \cdot \vec{b} - 2\vec{b}$	$^{2} = 8 + 3 - 2 = 9$,						
$\left \vec{m} \right = \sqrt{(\vec{a} + 2\vec{b})^2} = \sqrt{\vec{a}^2 + 4\vec{a} \cdot \vec{b} + 4\vec{b}^2} = 2\sqrt{3}$, 同组	$!$ 可求得 $ \vec{n} = \sqrt{13}$,						
所以 $\cos \theta = \frac{\overline{m} \cdot \overline{n}}{ \overline{m} \overline{n} } = \frac{9}{2\sqrt{3} \times \sqrt{13}} = \frac{3\sqrt{39}}{26}$.	[7]						
19. 解析: (1)由条件可知正六边形 ABCDEF 的边长为 4,							
所以底面积为 $6 \times \frac{1}{2} \times 4^2 \sin \frac{\pi}{3} = 24\sqrt{3}$,							
该正六棱锥的体积为 $\frac{1}{3}$ ×8×24 $\sqrt{3}$ = 64 $\sqrt{3}$,	3分						
正六棱锥的侧棱长为 $\sqrt{4^2+8^2}=4\sqrt{5}$,							
侧面等腰三角形的面积为 $\frac{1}{2} \times 4 \times \sqrt{(4\sqrt{5})^2 - 2^2} =$	$4\sqrt{19}$,						
故该正六棱锥的侧面积为 $6 \times 4\sqrt{19} = 24\sqrt{19}$;	6分						
(2)球心 M 一定在直线 SO 上,设球 M 的半径为 R ,							
则 $R = MS = MB$, 又 $MB^2 = OM^2 + OB^2$,							
所以 $R^2 = (8-R)^2 + 4^2$,解得 $R = 5$,	8分						
所以球 M 的表面积为 $4\pi R^2 = 100\pi$,	10分						
体积为 $\frac{4}{3}\pi R^3 = \frac{500}{3}\pi$.	12 分						
20. 解析: (1)由正弦定理边角互化可知, $a^2-b^2=c^2-bc$,即 $b^2+c^2-a^2=bc$,							
所以 $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{1}{2}$,	4分						

又 $A \in (0,\pi)$, 所以 $A = \frac{\pi}{3}$;	5 分
(2)点 D 是 BC 的中点,	
$BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos 60^\circ$, $\Box 12 =$	$=c^2+b^2-bc (I) \qquad \dots \qquad 7 $
$\overrightarrow{AD} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right), \text{RP} \ \overrightarrow{AD}^2 = \frac{1}{4} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)^2,$	9分
化简为 $4AD^2 = AB^2 + AC^2 + 2AB \cdot AC$,即 28	$B = c^2 + b^2 + bc , (II)$
由 $(I)(II)$ 两式可得 $bc = 8$,	10 分
所以 $S_{\triangle ABC} = \frac{1}{2}bc \sin A = 2\sqrt{3}$.	12 分
21. 解析: (1)由题意得 $\overrightarrow{AF} = 2\overrightarrow{FB}$,	All Replacements
$\text{III } \overrightarrow{OF} = \frac{2}{3} \overrightarrow{OB} + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} + \overrightarrow{CB} \right) + \frac{1}{3} \overrightarrow{OA} = \frac{2}{3} \left(\overrightarrow{OC} +$	$\frac{2}{3}\overline{OA} + \frac{2}{3}\overline{OC}$
故 $\overrightarrow{OD} = t\overrightarrow{OF} = \frac{2t}{3}\overrightarrow{OA} + \frac{2t}{3}\overrightarrow{OC}$,由共起点的三	E向量终点共线的充要条件知,
$\frac{2t}{3} + \frac{2t}{3} = 1$, $\mathbb{N} t = \frac{3}{4}$;	4分
(2)由已知 $\overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{CB} = \overrightarrow{OC} + \frac{1}{2}\overrightarrow{OA}$,	A Market Control of the Control of t
因 P 是线段 BC 上动点,则令 $\overrightarrow{CE} = x\overrightarrow{OA}$ $0 \le$	$x \leq \frac{1}{2}$,
$\overrightarrow{OB} = \lambda \overrightarrow{CA} + \mu \overrightarrow{OE} = \lambda \left(\overrightarrow{OA} - \overrightarrow{OC} \right) + \mu \left(\overrightarrow{OC} + \overrightarrow{CE} \right)$	$= (\lambda + \mu x) \overrightarrow{DA} + (\mu - \lambda) \overrightarrow{DC} , \dots 7 $
又 \overrightarrow{OC} , \overrightarrow{OA} 不共线, 则有 $\begin{cases} \mu - \lambda = 1 \\ \lambda + \mu x = \frac{1}{2} \end{cases} \begin{cases} \lambda \\ \mu \end{cases}$	$= \mu - 1$ $= \frac{3}{2 + 2x},$
$0 \le x \le \frac{1}{2} \Rightarrow 1 \le x + 1 \le \frac{3}{2} \Rightarrow 1 \le \mu \le \frac{3}{2}$	
$\lambda \cdot \mu = \mu(\mu - 1) = \left(\mu - \frac{1}{2}\right)^2 - \frac{1}{4} \not\equiv \mu \in \left[1, \frac{3}{2}\right] \perp :$	递增,10 分
所以 $\mu = 1$, $(\lambda \cdot \mu)_{\min} = 0$, $\mu = \frac{3}{2}$, $(\lambda \cdot \mu)_{\max}$	$\frac{3}{4}$

故 $\lambda \cdot \mu$ 的取值范围是 $\left[0, \frac{3}{4}\right]$. 22. 解析: (1)取 AD 的中点 M, 连接 OM、PM, 由正四棱锥的性质可知 $PO \perp$ 平面 ABCD, $:: AD \subset$ 平面 ABCD, 则 $AD \perp PO$, $:: PO \perp$ 面 ABCD,则 $\angle PAO$ 为侧棱 PA 与底面 ABCD 所成的角, 则 $\tan \angle PAO = \frac{\sqrt{6}}{2}$, 设 AB = a, 则 $AO = \frac{\sqrt{2}}{2}a$, 所以, $PO = AO \cdot \tan \angle POA = \frac{\sqrt{3}}{2}a$, (2)延长MO 交BC 于N ,则N 为BC 的中点, 取 PN 的中点 G, 连接 EG、 MG. 因为PB = PC, N为BC的中点,则 $BC \perp PN$, 同理可得 $BC \perp PM$, $:: PM \cap PN = P$, 故 $BC \perp$ 平面 PMN, $:: BC \subset$ 平面 PBC , :: 平面 PMN \bot 平面 PBC, $XPM = \sqrt{PA^2 - AM^2} = \sqrt{PB^2 - BN^2} = PN^{\circ}, \angle PMN = 60^{\circ},$ 所以, $\triangle PMN$ 为正三角形, $::G \to PN$ 的中点, 则 $MG \perp PN$, 又因为平面 PMN \cap 平面 PBC $\square PN$, 平面 PMN \bot 平面 PBC , MG \subset 平而 PMN , 所以, $MG \perp$ 平面 PBC, 取AM的中点F,连接EF, $:: G \setminus E$ 分别为 $PN \setminus PB$ 的中点,则 EG//BN 且 $EG = \frac{1}{2}BN$, 因为 AD//BC 且 AD = BC , M 、 N 分别为 AD 、 BC 的中点, 则 AM//BN 且 AM = BN , $:: F \to AM$ 的中点,则 $FM //BN \perp FM = \frac{1}{2}BN$,故 $FM //EG \perp FM = EG$, 所以,四边形 EFMG 为平行四边形,则 EF//MG,故 EF 上平面 PBC. 因此, $F \neq AD$ 的四等分点,靠近 A 点的位置。12 分