

Secondary School Mathematics & Science Competition Mathematics

5th May, 2012 1 hour 15 minutes

- Write your Student Number, English Name, Subject and Date in the spaces provided on the "MC Answer Sheet".
- Write your Student Number and English Name in the spaces provided on the Part B "Fill In The Blanks Answer Sheet".
- When told to open this question paper, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- ANSWER ALL QUESTIONS in Part A. You are advised to use an HB pencil to mark your answers on the MC Answer Sheet.
- You should mark only ONE answer for each question in Part A. If you mark more than one answer, you will receive NO MARKS for that question.
- Part B consists of Section B1, B2 and B3. ANSWER EITHER Section B1, B2 OR B3.
 ANSWER 5 QUESTIONS from your chosen Section ONLY.
- 7. For Part B, answers may be an exact value or mathematical expressions.
- 8. NO MARKS will be deducted for wrong answers in Part A and Part B.
- 9. The diagrams in the paper are not necessarily drawn to scale.

FORMULAS FOR REFERENCE

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

PART A

ANSWER ALL questions in this part

Choose the best answer for each question.

1.
$$4^{ab} =$$

A.
$$2^a \times 2^b$$
.

B.
$$4^a \times 4^b$$
.

C.
$$4^a + 4^b$$
.

D.
$$(2^b)^{2a}$$
.

2. Factorize
$$6ab - 9a^2 - b^2$$
.

A.
$$-(3a-b)^2$$

B.
$$(3a-b)^2$$

C.
$$(-3a-b)^2$$

3. If
$$x = \frac{2}{1+z} - y$$
, then $z = \frac{2}{1+z} - y$

A.
$$z = \frac{1}{x+y}$$
.

$$B. z = \frac{2 - x - y}{x}.$$

$$C. z = \frac{2 - x + y}{x + y}.$$

$$D. \quad z = \frac{2 - x - y}{x + y}.$$

4. Which of the following statement(s) is/are true?

I.
$$1-x^3 \equiv (1-x)(1+x+x^2)$$

II.
$$1-x^3 \equiv (1-x)^3$$

III.
$$1-x^3 \equiv (1-x) \left(\frac{-1+\sqrt{3}i}{2} - x \right) \left(\frac{-1-\sqrt{3}i}{2} - x \right)$$

- 5. If (x, y) = (2, 1) is the solution of $\begin{cases} ax + by = 17 \\ bx + cy = 9 \end{cases}$, which of the following is correct?
 - A. 4a + c = 25
 - B. 2a + c = 25
 - C. 4a c = 25
 - D. 2a c = 25
- 6. Find the least integral value of k such that the equation $x^2 4x + k = 0$ has no real roots.
 - A. 5
 - B. 4
 - C. 5
 - D. -4
- 7. If the roots of the equation $(a-2)x^2 + (a^2-4)x 1 = 0$ are equal in magnitude but opposite in sign, then a =
 - A. ± 2 .
 - B. ± 4 .
 - C. 2.
 - D. 2.
- 8. If $f(x) = \frac{x+1}{x-1}$, then $f\left(\frac{1}{x}\right) =$
 - A. f(x).
 - B. -f(x).
 - C. $f\left(\frac{1}{x}\right)$.
 - D. $-f\left(\frac{1}{x}\right)$.

9. Let f(x) be a function such that $f(x-1) = 2x^2 - x + 7$.

Which of the following is f(x+2)?

- A. $2x^2 x + 10$
- B. $2x^2 + 3x + 8$
- C. $2x^2 + 7x + 13$
- D. $2x^2 + 11x + 22$
- 10. The figure shows the graph of $y = ax^2 + bx + c$, where a, b and c are constants. Which of the following is/are true?

II.
$$b > 0$$

III.
$$c < 0$$

- B. I and III only
- C. II and III only
- D. I, II and III

- 11. It is given that $m \propto \sqrt{n}$. Find the percentage change in n such that m is increased by 25%.
 - A. Increased by 5.25%
 - B. Increased by 25%
 - C. Increased by 50%
 - D. Increased by 56.25%
- 12. In the figure, C is the centre of the circle, if AB = 20, CB = 10 and D is the mid-point of AB, find the area of $\triangle ADC$.

- B. 50.0 (square units)
- C. 86.6 (square units)
- D. 100 (square units)

- 13. In the figure, the radius of sector AOB is 2cm and $\angle BOA = 90^{\circ}$. It is given that CD is the perpendicular bisector of AO, find the area of ADC.
 - A. $0.866 \, cm^2$ (correct to 3 decimal places)
 - B. $1.047 \, cm^2$ (correct to 3 decimal places)
 - C. $1.142 \, cm^2$ (correct to 3 decimal places)
 - D. 1.228 cm² (correct to 3 decimal places)

14. The figure shows the cumulative frequency curve of a certain distribution.

Which of the following frequency curves best represents the distribution?

A.

B.

C.

D.

- 15. If the point A(a,b) is reflected about the line x + y = 0 to the point A', what are the coordinates of A'?
 - A. (-b,-a)
 - B. (-b, a)
 - C. (b,-a)
 - D. (b,a)
- 16. If b and c are positive integers, then solve $x^2 bx + cx bc \le 0$.
 - A. $-b \le x \le c$
 - B. $-c \le x \le b$
 - C. $x \ge b$ or $x \le -c$
 - D. $x \ge c$ or $x \le -b$
- 17. Let $\log 2 = a$, $\log 3 = b$ and $\log 7 = c$, then $\log 315 =$
 - A. a+2b-c.
 - B. a-2b-c+1.
 - C. -a + 2b + c + 1.
 - D. -2a-2b+c-1.
- 18. If a, b and c are consecutive positive integers, then
 - A. a+b+c is even.
 - B. a+b+c is odd.
 - C. abc is even.
 - D. abc is odd.

- 19. If α and β are the roots of the equation $2x^2 + 3x + 4 = 0$, then $\frac{1}{\alpha + 1} + \frac{1}{\beta + 1} =$
 - A. 3.
 - B. 3.
 - C. $\frac{1}{3}$.
 - D. $-\frac{1}{3}$.
- 20. If John walks 1 km/h faster, he will take $\frac{1}{6}$ hour less to travel 2 km, what is his original speed of walking?
 - A. 4 km/h
 - B. 3 km/h
 - C. 2 km/h
 - D. 1 km/h
- 21. In the figure, a circle is inscribed in quadrilateral ABCD, where BC = 28, AD = 22. Find the perimeter of quadrilateral ABCD.

- B. 92
- C. 96
- D. 100

- 22. Find the number of distinct real roots of equation $(2x^2 5x)^2 = (x^2 2x 3)^2$.
 - A. 0
 - B. 1
 - C. 2
 - D. 4

23. The figure below shows the graph of y = f(x).

Which of the following may represent the graph of y = 2f(2x - 2) + 2?

B.

24. Which of the following has the greatest value?

- $2012^{2011^{2012}}$ A.
- $2011^{2012^{2011}}$ B.
- $2012^{2011^{2011}}$ C.
- $2011^{2012^{2012}}$ D.

- 25. If $x^3 3x^2 + 4$ is divisible by $x^2 + bx + c$, find the sum of the possible values of b.

 - В. - 2
 - C. 1
 - D. 0
- 26. In the figure, ABCD is a sheet of paper in rectangular shape where AB = 10 cm and $BC = 10\sqrt{2}$ cm. The paper is folded along XY such that A is placed exactly on top of C. Find XD.

- B. $\frac{5\sqrt{2}}{2}$ cm
- C. $2\sqrt{2}$ cm
- Cannot be determined due to inadequate information
- 27. If $y^2 x^2$ varies inversely as $\frac{1}{x^2} \frac{1}{y^2}$. Which of the following is true?
 - A. $xy \propto (x^2 + y^2)$ B. $xy \propto (x^2 y^2)$

 - C. $x^2y^2 \propto (x^4 + y^4)$ D. $x^2y^2 \propto (x^4 y^4)$

28. In the figure, a regular star ABCDE is inscribed in a circle. If AC = 10, find the diameter of the circle.

C. 12.361 (correct to 3 decimal places)

D. 16.180 (correct to 3 decimal places)

29. The figure below shows the cumulative frequency curve of a certain distribution.

Which of the following is/are correct?

- I. Median = 50
- II. Interquartile Range < 50
- III. Mean > 50
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

30. In the figure, P = (-5,0) and Q = (0,4). If the straight line PQ intersects the line x = k at R, find the y-coordinate of R.

B.
$$\frac{20+4k}{5}$$

C.
$$\frac{25-5k}{4}$$

D.
$$\frac{25+5k}{4}$$

31. Given that $y = \frac{t^3}{25}$, which of the following graphs shows the linear relation between $\log_5 y$ and $\log_5 t$?

A.

B.

C.

D.

- 32. Four different numbers are chosen from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. What is the probability that the chosen numbers have the smallest standard deviation?
 - A. $\frac{2}{105}$
 - B. $\frac{1}{210}$
 - C. $\frac{1}{35}$
 - D. $\frac{1}{30}$
- 33. Let $f(x) = x^2 + bx + c$, where b and c are real numbers. One of the roots of f(x) = 0 is 4-3i, where $i = \sqrt{-1}$. Find the value of b-c.
 - A. -33
 - B. -34
 - C. -35
 - D. -36
- 34. The graph of $y = \sqrt{1 (x 2)^2} + 3$ is rotated about the origin counterclockwise 90°.

Find the minimum y-value of points of the resulting graph.

- A. 0
- B. 1
- C. 2
- D. 3
- 35. The mean, median, and mode of real numbers 4, 4, 4, 6, 7, 18, *x* are not all equal. When they are arranged in ascending order, they form an arithmetic sequence. Find the sum of all possible values of *x*, correct to the nearest integer.
 - A. 6
 - B. 10
 - C. 14
 - D. 18

PART B

ANSWER EITHER Section B1, B2 or B3 in this part.

Section B1

ANSWER FIVE QUESTIONS ONLY

36. [Arithmetic and geometric sequences and their summations]

An infinite table of integers is shown as follows:

1	5	9	13	17	
4	9	14	19	24	
7	13	19	25	31	
10	17	24	31	38	
13	21	29	37	45	
:	i	i	:	i	

Each row in the table is an arithmetic sequence. Each column in the table is an arithmetic sequence.

- (a) Find the first integer of the 2012th row.
- (b) Find the integer at the intersection of 2012th row and 2012th column.

37. [Arithmetic and geometric sequences and their summations]

In a geometric sequence of positive real numbers, the sum of the first 3 terms is 2 and the sum of the first 9 terms is 14.

- (a) Find the possible value(s) of its common ratio.
- (b) Find the sum of its first 12 terms.

38. [Permutation, combination and probability]

Three boys and seven girls are arranged to sit in a row of ten chairs.

- (a) Suppose that the three boys sit together. In how many ways can the ten children choose their seats?
- (b) Suppose that each boy sits between two girls. In how many ways can they choose their seats?

39. [Permutation, combination and probability]

Twelve identical badges are shared among 8 students.

- (a) If each student gets at least one badge, find the number of possible ways of sharing the badges.
- (b) If each student gets at least zero badge, find the number of possible ways of sharing the badges.

40. [Inequalities and linear programming]

Let a = 300, correct to the nearest hundred and b = 10, correct to the nearest ten.

- (a) Find the range of values of a + b.
- (b) Find the range of values of $\frac{a}{b}$.

41. [Inequalities and linear programming]

A scientist mixes chemical A and B to form a new product. Under certain constraints, the feasible combinations of two chemicals are shown by "x" in the figure. The cost of each unit of A and B are \$1 000 and \$3 000 respectively.

- (a) Find the minimum cost of the product.
- (b) The scientist finds that the data shown in above figure is wrong. The feasible combinations of two chemicals should include all integral quantities (in units) of A and B where the quantities of chemical A is within 1 to 5 (inclusive) and the quantities of chemical B is within 1 to 8 (inclusive).

If the scientist wants to keep the minimum cost of the product obtained in (a), how many total feasible combination(s) of two chemicals satisfies/satisfy the conditions?

42. [Trigonometry]

Let a be a constant and $-90^{\circ} < \theta < 90^{\circ}$. The figure shows the graph of $y = a\cos(x^{\circ} + \theta)$.

- (a) Find the value of a.
- (b) Find the value of y when $x = 960^{\circ}$.

43. [Trigonometry]

In $\triangle ABC$, AB = 3 cm, BC = 4 cm, AC = 5 cm. Point D and E are drawn on AC and BC respectively, such that area of $\triangle DEC$ is equal to 6 cm². Let the length of DE, EC, CD be x cm, y cm, z cm respectively, and $\angle C = \theta$.

- (a) Find an expression of yz in terms of θ .
- (b) Find the minimum possible value of x.

44. [Equations of circle]

Find the equations of two circles with radius 5 units, passing through the point (1, 2) and touching the *x*-axis. Write your answers in (a) and (b) separately.

45. [Equations of circle]

Let the equations of circles C_1 and C_2 be $x^2 + y^2 + 10x - 2y + a = 0$ and $x^2 + y^2 - 14x + 28y + 81 = 0$ respectively, where a is a constant. The two circles touch each other externally at the point P.

- (a) Find the value of a.
- (b) Find the equation of the common tangent of C_1 and C_2 at the point P.

END OF PART B SECTION B1

Section B2

ANSWER FIVE QUESTIONS ONLY

36. [Binomial Expansion]

In the expansion of $\left(\frac{2}{x} + \frac{x^2}{4}\right)^9$, if the general term is $C_r^9(2)^k(x)^{-k}$,

- (a) express k in terms of r and
- (b) find the constant term.

37. [Binomial Expansion]

- (a) Find the coefficient of x^r in the expansion of $(x+1)^{99}$, where r is an integer and $0 \le r \le 99$.
- (b) Hence or otherwise, find the remainder when 7199 is divided by 1000.

38. [Exponential and logarithmic functions]

- (a) Solve the exact value of x in equation $\ln(e^{2x} 9) \ln 4048141 = \ln(e^x + 3)$.
- (b) Using the result of (a), find the value of y if $\ln y = \frac{x}{2}$.

39. [Exponential and logarithmic functions]

The amount Q (in mg) of a piece of radioactive element is recorded after t days as follows:

t	0	1	2	3	4	5
$\ln Q$	7.80	7.57	7.34	7.11	6.88	6.65

- (a) Suppose that Q and t can be modelled by $Q(t) = ka^t$, where a > 0 and $a \ne 1$. Find a, correct to 3 significant figures.
- (b) Find the value of t, correct to the nearest integer, when the amount of the radioactive element is $\frac{1}{4}$ of its initial value.

17

40. [Differentiation]

If $y = x^k + 5x$, where k is a non-zero constant, find

(a)
$$\frac{d^2y}{dx^2}$$
 and (b) $k \text{ if } 2x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 15x = 0.$

41. [Differentiation]

(a) Find
$$\frac{d}{dx} \left(\frac{1}{2} \sqrt{x} \ln x \right)$$
 when $x = 1$.

(b) Hence, find
$$\frac{d}{dx}\sqrt{x}^{\sqrt{x}}$$
 when $x = 1$.

42. [Differentiation]

The total area of a square and an equilateral triangle is 2012 cm². Let the length of a side of the square = s cm, the length of a side of the equilateral triangle = t cm, and $r = \frac{s}{t}$.

- (a) If $s = r\sqrt{f(r)}$ and $t = \sqrt{f(r)}$, where f(r) is a function of r, find an expression for f(r). (Give the answer in surd form if necessary.)
- (b) Find the value of r such that the total perimeter of the square and triangle is maximized.(Give the answer in surd form if necessary.)

43. [Differentiation]

A rectangular piece of cardboard of length 78 cm and width 48 cm is cut to the shape shown in the figure. A pizza box of depth x cm with a lid is formed by folding along the dotted lines. Assume that all angles are right angles and the thickness of the cardboard is neglected.

Let $V \text{ cm}^3$ be the volume of the pizza box.

- (a) If $V = Ax^3 + Bx^2 + 1872x$, find A and B.
- (b) If V is a maximum, find the value of x, correct to 3 significant figures.

44. [Integration]

Evaluate the following integrals:

(a)
$$\int_{2}^{4} (5x^{2} - 1) dx - \int_{2}^{-2} (5x^{2} - 1) dx,$$

(b)
$$\int_{1}^{4} x \sqrt{x} \, dx + \int_{4}^{25} t \sqrt{t} \, dt$$
.

45. [Integration]

The rates of change of annual expenses of Mr Leung can be modelled by

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{100e^{0.1t}}{t + 20}$$

where *E* (in thousand dollars) is the total expenses of Mr. Leung and *t* is the number of years elapsed since 1 January 2008.

(a) Let $\tilde{E} = \int_0^n \frac{100e^{0.1t}}{t+20} dt$ be the total expenses of Mr. Leung from 1 January 2008 to 31

December 2011, what is the value of n?

(b) Use the trapezoidal rule with 4 subintervals to estimate the total expenses of Mr. Leung from 1 January 2008 to 31 December 2011. Correct the answer to the nearest integer.

END OF PART B SECTION B2

Section B3

ANSWER FIVE QUESTIONS ONLY

36. [Binomial Theorem]

In the expansion of $\left(\frac{2}{x} + \frac{x^2}{4}\right)^9$, if the general term is $C_r^9(2)^k(x)^{-k}$,

- (a) express k in terms of r and
- (b) find the constant term.

37. [Binomial Theorem]

- (a) Find the coefficient of x^r in the expansion of $(x+1)^{99}$, where r is an integer and $0 \le r \le 99$.
- (b) Hence or otherwise, find the remainder when 7199 is divided by 1000.

38. [Trigonometric functions]

If
$$0 < B < A < \frac{\pi}{2}$$
 such that $\cos A \cos B = \frac{1}{4}$ and $\sin A \sin B = \frac{\sqrt{5}}{4}$.

- (a) Find the value of cos(A B) + cos(A + B).
- (b) Find the value of A in terms of π .

39. [Trigonometric functions]

In the figure, $\triangle ABC$ is a right-angled triangle, $\angle B = 90^{\circ}$, AB = 8 cm, BC = 6 cm.

A circular disk of radius 1 cm and centre P rolls inside ΔABC and is always tangent to at least one side of the triangle.

- (a) What is the shape of locus of P?
- (b) Let the area enclosed by the locus of P = x cm². Find the exact value of x.

40. [Differentiation]

Given that $\tan y = x$.

- (a) Express $\frac{dy}{dx}$ in terms of x.
- (b) Find the value of $\frac{d^2y}{dx^2}$ when $y = \frac{\pi}{4}$.

41. [Differentiation]

- (a) Find $\frac{d}{dx} \left(\frac{1}{2} \sqrt{x} \ln x \right)$ when x = 1.
- (b) Hence, find $\frac{d}{dx}\sqrt{x}^{\sqrt{x}}$ when x=1.

42. [Differentiation]

The total area of a square and an equilateral triangle is 2012 cm². Let the length of a side of the square = s cm, the length of a side of the equilateral triangle = t cm, and $r = \frac{s}{t}$.

(a) If $s = r\sqrt{f(r)}$ and $t = \sqrt{f(r)}$, where f(r) is a function of r,

find an expression for f(r). (Give the answer in surd form if necessary.)

(b) Find the value of r such that the total perimeter of the square and triangle is maximized.(Give the answer in surd form if necessary.)

43. [Differentiation]

A rectangular piece of cardboard of length 78 cm and width 48 cm is cut to the shape shown in the figure. A pizza box of depth x cm with a lid is formed by folding along the dotted lines. Assume that all angles are right angles and the thickness of the cardboard is neglected.

Let $V \text{ cm}^3$ be the volume of the pizza box.

- (a) If $V = Ax^3 + Bx^2 + 1872x$, find A and B.
- (b) If V is a maximum, find the value of x, correct to 3 significant figures.

44. [Integration]

Evaluate the following integrals:

(a)
$$\int_{2}^{4} (5x^{2} - 1) dx - \int_{2}^{-2} (5x^{2} - 1) dx,$$

(b)
$$\int_1^4 x \sqrt{x} \, dx + \int_4^{25} t \sqrt{t} \, dt.$$

45. [Integration]

The figure shows the graph of the curve $y = 6 - e^{2x}$ which cuts the x-axis and the y-axis at A and C respectively. The tangent to this curve at C cuts the x-axis at B.

- (a) Find the coordinates of B.
- (b) Find the area of the shaded region bounded by the curve, the tangent and the *x*-axis. Correct the answer to 3 significant figures.

END OF PART B SECTION B3

END OF PAPER