贵州省卓越发展计划高二测试参考答案

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	C	В	A	D	C	В	D	C	ACD	AD	ABD	ABD

- 1.【解析】
- 2.【解析】
- 3.【解析】因为 $y = \sin 2x + \cos 2x = \sqrt{2}\sin\left(2x + \frac{\pi}{4}\right)$,函数的周期为 π ,显然是非奇非偶函数,

A不正确;

因为
$$y = \sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right)$$
, 函数的周期为 2π , B 不正确;

因为
$$y = \sin\left(2x + \frac{\pi}{2}\right) = \cos 2x$$
,函数的周期为 π ,是偶函数,C 正确;

因为
$$y = \cos\left(2x + \frac{\pi}{2}\right) = -\sin 2x$$
,函数的周期为 π ,是奇函数。D 不正确; 故选: C

- 4. 【解析】
- 5.【解析】由斐波那契数列为 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ..., 知 $a_4 + a_8 = 3 + 21 = 24$. 故选: C
- 6.【解析】
- 7.【解析】对于 A,每人各有 4 种选择,每人都安排一项工作的不同方法数为 4^4 , A 错误;对于 B,将 4 名同学按 2,1,1 分成 3 组有 C_4^2 种方法,再将这 3 组分配到 3 个比赛场馆,共有 A_3^3 种,则所有分配方案共有 C_4^2 A_3^3 =36(种), B 错误;

对于 C, 由题可知, 甲两天, 乙三天, 丙和丁各一天, 所以不同的安排方法有 $C_7^2 \cdot C_5^2 \cdot A_2^2$ =420 种, C 错误;

对于 D, 先将 4 名志愿者分成 2 组、每组 2 个人或者一组 3 人, 一组 1 人, 若每组 2 个人, 分别分配给 2 个项目,则有 C_4^2 =6 种分法, 若一组 3 人,一组 1 人,分别分配给 2 个项目,则有 C_4^3 A $_2^2$ =8 种分法,因此不同的分配方案共 14 种, D 正确.

- 8.【解析】构造函数 F(x) = f(x) x,因为 f'(x) > 1,所以 F'(x) = f'(x) 1 > 0,可知函数 F(x) 在 R 上单调递增, F(1) = f(1) 1 = -f(-1) 1 = 1 ,不等式 f(x-1) > x 化为 f(x-1) (x-1) > 1,即 F(x-1) > F(1),由单调递增可得 x-1 > 1,即 x > 2,故选 C .
- 9.【解析】已知函数是奇函数且图象关于直线 x=1 对称,可知函数的周期为 4,由 f(x) 在区间 [-1,3] 内的图象可知函数对称轴为 $x=1+2k,k\in Z$,对称中心为 $(2k,0),k\in Z$. 所以

f(-4) = f(0) = 0, f(5) = f(1) = 1, A 正确; 如果 f(x-4) = f(x+1), 则 f(x) = f(x+5),

周期为 5, 所以 B 错误; 直线 x = -3 是函数的一条对称轴, C 正确; 点 (4,0) 为函数的一个 对称中心, D正确, 故选 A C D.

10.【解析】对于 A: 当
$$\theta = \frac{2\pi}{3}$$
时, $\vec{b} = \left(\cos\frac{2\pi}{3}, \sin\frac{2\pi}{3}\right) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$,

此时 $\vec{a}\cdot\vec{b}=\sqrt{3}\times\left(-\frac{1}{2}\right)+\frac{\sqrt{3}}{2}\times 1=0$,故 $\vec{a}\perp\vec{b}$,即A正确;

对于 B: 若 $\frac{1}{a}$ // $\frac{1}{b}$,则 $\cos q = \sqrt{3} \sin q$,所以 $\tan \theta = \frac{\sqrt{3}}{3}$,所以 $\theta = \frac{\pi}{6} + k\pi$, $k \in \mathbb{Z}$,故 B 错误;

对于 C:
$$\vec{a} \cdot \vec{b} = \sqrt{3}\cos\theta + \sin\theta = 2\left(\frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta\right) = 2\sin\left(\theta + \frac{\pi}{3}\right) \in [-2, 2]$$
, 故 C 错误;

对于 D: 因为
$$\vec{a} = (\sqrt{3}, 1)$$
, $\vec{b} = (\cos \theta, \sin \theta)$, 所以 $|\vec{a}| = \sqrt{(\sqrt{3})^2 + 1^2} = 2$, $|\vec{b}| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$,

所以
$$|\vec{a} - \vec{b}| = \sqrt{(\vec{a} - \vec{b})^2} = \sqrt{\vec{a}^2 - 2\vec{a} \cdot \vec{b} + \vec{b}^2} = \sqrt{|\vec{a}|^2 - 2\vec{a} \cdot \vec{b} + |\vec{b}|^2} = \sqrt{5 - 4\sin\left(\theta + \frac{\pi}{3}\right)}$$
,

因为 $\sin\left(\theta + \frac{\pi}{3}\right) \in [-1,1]$,所以 $5 - 4\sin\left(\theta + \frac{\pi}{3}\right) \in [1,9]$,所以 $\vec{a} = \vec{b} \in [1,3]$,故 D 正确;

故选: AD

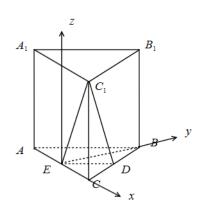
11. 【解析】对于 A,当 μ = $\frac{1}{2}$ 时, E 为 AC 中点, \therefore AB=BC, \therefore 在等腰三角形 ABC 中, BE \bot AC,又在直三棱柱中, AA_1 上面 ABC 且 BE 在面 ABC 内, $::AA_1$ 上 BE 且 $AA_1 \cap AC = A$, AA_{11} , AC 在面 AA_1C_1C 内, :BE 上面 AA_1C_1C 且 C_1E 在面 AA_1C_1C 内, :BE 上 C_1E , A 正确; 对于 B, 在直三棱柱中, $BB_1 \perp$ 面 $ABC \perp BB_1$ 在面 B_1EB 内, ∴ 面 $B_1EB \perp$ 面 ABC, B 正确; 对于 C, 若 A_1B_1 // 平面 DEC_1 , 易得 $\lambda=\mu$ 且 λ , $\mu\in(0,1)$, C 错误;

对于 D, 如图建系,设 $AB=BC=BB_1=2$,则 $B_1(0,\sqrt{3},2),C_1(1,0,2),E(0,0,0)$,设平面 B_1C_1E 的

法向量为 $\vec{n} = (x, y, z)$

曲
$$\begin{cases} \vec{n} \cdot \overrightarrow{EB}_1 = 0 \\ \vec{n} \cdot \overrightarrow{EC}_1 = 0 \end{cases}, \quad \mathcal{H} \begin{cases} \sqrt{3}y + 2z = 0 \\ x + 2z = 0 \end{cases}, \quad \mathbf{x} \vec{n} = (2, \frac{2}{\sqrt{3}}, -1)$$

则平面 BDE 与平面 B_1C_1E 所成的夹角的余弦值为



$$\frac{1}{1\cdot\sqrt{4+\frac{4}{3}+1}} = \frac{\sqrt{57}}{19}$$
, D 正确.

故选 ABD.

 $0<\frac{1}{a}<\frac{1}{b}<1$ 12.【详解】ABD 因为 $a<\frac{1}{b}<1$,且 $\ln a \ln b=1$,可得 a>e>b>1,

对于选项 A: $: a > e > b > 1 : 2^a > 2^b$ 故 A 正确;

对于选项 B: 因为 $1 = \ln a \ln b < \frac{(\ln a + \ln b)^2}{4} = \frac{(\ln ab)^2}{4}$,即 $\frac{\ln^2 ab}{4} > 1$

解得 $\ln ab > 2$, 所以 $ab > e^2$, 故 B 正确;

对于选项 C: 因为a > e > b > 1, 则(a-1)(b-1) = ab+1-(a+b) > 0,

可得ab+1>a+b, 所以 $\log_2(ab+1)>\log_2(a+b)$, 故 C 错误;

构造函数 $f(x) = \frac{e^x}{x}(x > 1)$ 则 $f'(x) = \frac{e^x(x-1)}{x^2} > 0$

所以函数 $f(x) = \frac{e^x}{x}$ 在 $(1,+\infty)$ 上单调递增,又 a > e > b > 1,

所以 $\frac{e^a}{a} > \frac{e^b}{b}$,所以 $\frac{e^a}{e^b} > \frac{a}{b}$,即 $\frac{a}{b}$,D 正确;

14.<u>3</u>;【解析】

 $\frac{\sqrt{6}}{3}$;【解析】

16. $\underline{a_n} = n \cdot 2^{n+1}$; <u>6</u>·(第一空 2 分,第二空 3 分)【解析】在数列 $\{a_n\}$ 中, $a_1 = 4$,由 $na_{n+1} = 2(n+1)a_n$ $= 2 \cdot \frac{a_{n+1}}{n+1} = 2 \cdot \frac{a_n}{n}$, = 4,

于是得数列 $\{\frac{a_n}{n}\}$ 是以 4 为首项,2 为公比的等比数列,则 $\frac{a_n}{n}=4\cdot 2^{n-1}$,即 $a_n=n\cdot 2^{n+1}$,

所以数列 $\{a_n\}$ 的通项公式为 $a_n = n \cdot 2^{n+1}$;

显然,
$$\frac{a_n}{(n+1)(n+2)} = \frac{n \cdot 2^{n+1}}{(n+1)(n+2)} = \frac{(n+1) \cdot 2^{n+2} - (n+2) \cdot 2^{n+1}}{(n+1)(n+2)} = \frac{2^{n+2}}{n+2} - \frac{2^{n+1}}{n+1},$$
则 $S_n = (\frac{2^3}{3} - \frac{2^2}{2}) + (\frac{2^4}{4} - \frac{2^3}{3}) + (\frac{2^5}{5} - \frac{2^4}{4}) + \dots + (\frac{2^{n+1}}{n+1} - \frac{2^n}{n}) + (\frac{2^{n+2}}{n+2} - \frac{2^{n+1}}{n+1}) = \frac{2^{n+2}}{n+2} - 2,$
由 $S_n \ge 30$ 得:
$$\frac{2^{n+2}}{n+2} - 2 \ge 30$$
, 即
$$\frac{2^{n+2}}{n+2} \ge 32$$
, $\diamondsuit b_n = \frac{2^{n+2}}{n+2}$, 则
$$\frac{b_{n+1}}{b_n} = \frac{2(n+2)}{n+3} > 1$$
, 即 数 列 $\{b_n\}$ 是 递增数 列,

由
$$\frac{2^{n+2}}{n+2} \ge 32$$
, 得 $b_n \ge 32$, 而 $b_6 = 32$, 因此, $b_n \ge b_6$, 从而得 $n \ge 6$, $n_{\min} = 6$,

所以满足不等式 $S_n \ge 30$ 的n的最小值为 6.

故答案为: $a_n = n \cdot 2^{n+1}$; 6

17.解: 若选择①: 由已知条件及正弦定理,得
$$\frac{b}{a+c} = \frac{a-c}{b} + \frac{c}{a+c}, \dots 1$$
 即
$$\frac{b-c}{a+c} = \frac{a-c}{b} + \frac{a-c}{a+c}$$
 整理得 $b^2 + c^2 - a^2 = bc$

又因为
$$A \in (0,\pi)$$
,………………………………………………………………………………4 分

又因为
$$A \in (0,\pi)$$
, 4 分 所以 $A = \frac{\pi}{3}$.

若选择②: 因为 $2a\cos B = 2c - b$,由正弦定理得

所以
$$A = \frac{\pi}{3}$$
;

若选择③: 因为
$$a^2-b^2=ac\cos B-\frac{1}{2}bc$$
,

所以根据余弦定理,可得

所以 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	$=\frac{1}{2}.$		3 分
因为 $A \in (0,\pi)$,			4 分
所以 $A=\frac{\pi}{3}$.			5 分
(2) 因为 $a^2 = b^2 + c^2$	$-2bc\cos A = b^2 + c^2 - bc$	$\geq 2bc - bc = bc$,	7 分
所以 $bc \leq 4$,当且 a	又当 $b=c=2$ 时取等号;		8分
又因为 $\frac{1}{2}bc\sin A =$	$\frac{1}{2}AD \cdot a \perp a = 2$		
所以 $AD = \frac{1}{2}bc$ si	$nA = \frac{\sqrt{3}}{4}bc \leqslant \sqrt{3} , \dots$		9 分
故 <i>AD</i> 的最大值为√3		A A A A A A A A A A A A A A A A A A A	10 分
18解:用比例分配的分)层随机抽样方法从这	100 盒牛排中抽取 10 盒,	1 分
其中 T骨牛排有 3 盒,	非 T 骨牛排有 7 盒,		3 分
再从中随机抽取4盒,	设恰好有 2 盒牛排是 7	了骨牛排为事件 A,	
$\text{III } P(A) = \frac{C_3^2 C_7^2}{C_{10}^4} = \frac{3 \times 21}{210}$	$=\frac{3}{10};$		6 分
(2) 这 100 盒牛排中	菲力牛排有 20 盒,所以	以菲力牛排的频率为 $\frac{20}{100}$ =	$=\frac{1}{5}$,7 $\%$
设从这批牛排中随机抽	取1盒,抽到菲力牛排		
将频率视为概率,用样			8 分
从这批牛排中随机抽取	3 盒、抽到的菲力牛排	\sharp 的数量 X 满足 $X: B(3,$	$\left(\frac{1}{5}\right)$,9 $\%$
$P(X=0) = C_3^0 \left(\frac{1}{5}\right)^0 \left(\frac{4}{5}\right)^0$	$^{3} = \frac{64}{125}, P(X=1) = C_{3}^{1}$	$\frac{1}{5}\bigg)\bigg(\frac{4}{5}\bigg)^2 = \frac{48}{125} \;,$	10 分

 $P(X=2) = C_3^2 \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right) = \frac{12}{125}, P(X=3) = C_3^3 \left(\frac{1}{5}\right)^3 \left(\frac{4}{5}\right)^0 = \frac{1}{125}.$

19.解:(1)完成列联表如图所示:

合计	20 <i>n</i>	20n	40n
----	-------------	-----	-----

$$\chi^2 = \frac{40n(15n \times 10n - 10n \times 5n)^2}{25n \times 15n \times 20n \times 20n} = \frac{8}{3}n$$

由题意可得 $5.024 \le \frac{8n}{3} < 6.635$,解得 $1.884 \le n < 2.488125$,------4分

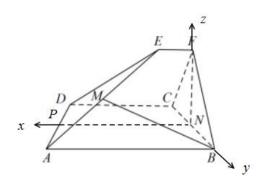
又因 $n \in \mathbb{N}^*$,所以n = 2; -------6 分

20.(1) : 由图一得: $DC \perp CF$, $DC \perp CB$, 且 $CF \cap CB = C$,

∴在图 2 中 DC ⊥平面 BCF, $\angle BCF$ 是二面角 F - DC - B 的平面角,则 $\angle BCF = 60^{\circ}$,

 \therefore $\triangle BCF$ 是正三角形,且 N 是 BC 的中点, \therefore $FN \perp BC$,又 DC 上平面 BCF , FN \subset 平面 BCF ,可得 $FN \perp CD$,而 $BC \cap CD = C$ … \therefore FN \bot 平面 ABCD ,而 AD \subset 平面 ABCD \therefore $FN \perp AD$.

(2)因为FN 上平面ABCD,过点N 做 AB 平行线NP,所以以点N 为原点,NP,NB、NF 所在直线分别为x 轴、x 轴建立空间直角坐标系N-xyz,



则 $A(5,\sqrt{3},0), B(0,\sqrt{3},0), D(3,-\sqrt{3},0), E(1,0,3)$,设 $M(x_0, y_0, z_0)$

$$\vec{\cdot} \cdot \overrightarrow{AM} = (x_0 - 5, y_0 - \sqrt{3}, z_0), \vec{AE} = (-4, -\sqrt{3}, 3), \vec{AD} = (-2, -2\sqrt{3}, 0), \vec{DE} = (-2, \sqrt{3}, 3)$$

$$\vec{\cdot} \vec{AM} = \lambda \vec{AE}, \quad \vec{\cdot} \begin{cases} x_0 - 5 = -4\lambda \\ y_0 - \sqrt{3} = -\sqrt{3}\lambda, \\ z_0 = 3\lambda \end{cases} \begin{cases} x_0 = 5 - 4\lambda \\ y_0 = \sqrt{3} - \sqrt{3}\lambda, \\ z_0 = 3\lambda \end{cases}$$

 $\vec{BM} = (5-4\lambda, -\sqrt{3}\lambda, 3\lambda),$ 设平面 ADE 的法向量为 $\vec{n} = (x, y, z)$

$$\pm \begin{cases}
\vec{n} \cdot \overline{AD} = 0 \\
\vec{n} \cdot \overline{DE} = 0
\end{cases}, \quad
\begin{cases}
-2x - 2\sqrt{3}y = 0 \\
-2x + \sqrt{3}y + 3z = 0
\end{cases}, \quad
\Re \vec{n} = (\sqrt{3}, -1, \sqrt{3}),$$

设直线 BM 与平面 ADE 所成角为 θ ,

21. (1) 抛物线的准线为 $x = -\frac{p}{2}$, 当MD = x轴垂直时,点M的横坐标为p,

此时
$$|MF|=p+\frac{p}{2}=3$$
,所以 $p=2$,

所以抛物线 C的方程为 $y^2 = 4x$;

(2)
$$\mbox{if } M\left(\frac{y_1^2}{4}, y_1\right), N\left(\frac{y_2^2}{4}, y_2\right), A\left(\frac{y_3^2}{4}, y_3\right), B\left(\frac{y_4^2}{4}, y_4\right), \mbox{ if } MN: x = my + 1,$$

由
$$\begin{cases} x = my + 1 \\ y^2 = 4x \end{cases}$$
 可得 $y^2 - 4my - 4 = 0$, $\Delta > 0$, $y_1 y_2 = -4$,

由斜率公式可得
$$k_{MN} = \frac{y_1 + y_2}{\frac{y_1^2}{4} - \frac{y_2^2}{4}} = \frac{4}{y_1 + y_2}, \quad k_{AB} = \frac{y_3 - y_4}{\frac{y_3^2}{4} - \frac{y_4^2}{4}} = \frac{4}{y_3 + y_4},$$

直线
$$MD: x = \frac{x_1 - 2}{y_1} \cdot y + 2$$
,代入抛物线方程可得 $y^2 - \frac{4(x_1 - 2)}{y_1} \cdot y - 8 = 0$,

$$\Delta > 0, y_1 y_3 = -8$$
, 所以 $y_3 = 2y_2$, 同理可得 $y_4 = 2y_1$,

所以
$$k_{AB} = \frac{4}{y_3 + y_4} = \frac{4}{2(y_1 + y_2)} = \frac{k_{MN}}{2}$$

又因为直线 MN、AB 的倾斜角分别为 α , β , 所以 $k_{AB} = \tan \beta = \frac{k_{MN}}{2} = \frac{\tan \alpha}{2}$,

若要使
$$\alpha-\beta$$
最大,则 $\beta\in\left(0,\frac{\pi}{2}\right)$,设 $k_{MN}=2k_{AB}=2k>0$,则

$$\tan\left(\alpha-\beta\right) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta} = \frac{k}{1 + 2k^2} = \frac{1}{\frac{1}{k} + 2k} \le \frac{1}{2\sqrt{\frac{1}{k} \cdot 2k}} = \frac{\sqrt{2}}{4},$$

当且仅当
$$\frac{1}{k} = 2k$$
 即 $k = \frac{\sqrt{2}}{2}$ 时,等号成立,

所以当
$$\alpha - \beta$$
最大时, $k_{AB} = \frac{\sqrt{2}}{2}$, 设直线 $AB: x = \sqrt{2}y + n$,

代入抛物线方程可得 $y^2 - 4\sqrt{2}y - 4n = 0$,

$$\Delta > 0$$
, $y_3 y_4 = -4n = 4y_1 y_2 = -16$, 所以 $n = 4$,

所以直线 $AB: x = \sqrt{2}y + 4$

22. (1) 因为函数
$$f(x) = \ln(x+1)(x>-1)$$
,所以 $f'(x) = \frac{1}{x+1}$.: $f'(0) = 1$.: $f(0) = 0$ 函数 $f(x)$ 在 $x = 0$ 处的切线方程 $y = x$

(2) 设 $g(x) = \ln(x+1) - x$, $(x>-1)$,则 $g'(x) = \frac{1}{x+1} - 1$,

(2)
$$\mbox{if } g(x) = \ln(x+1) - x$$
, $(x > -1)$, $\mbox{if } g'(x) = \frac{1}{x+1} - 1$

所以g(x)在(-1,0)单调递增,在 $(0,+\infty)$ 单调递减,

由
$$g(0) = 0$$
 得 $g(x) \le 0$, 即当 $x > -1$ 时, $\ln(x+1) \le x$ ……… (*)

$$\Rightarrow h(x) = x - a^2 e^x + a$$
, $x > -1$

$$h'(x) = 1 - a^2 e^x$$
, $\Leftrightarrow h'(x) = 0 \Leftrightarrow x = -2 \ln a \le 0$

当 $-2\ln a \le -1$ 即 $a \ge \sqrt{e}$ 时, $h'(x) \le 0$,有h(x)在 $(-1,+\infty)$ 上单调递减

所以
$$h(x) < -1 - \frac{a^2}{e} + a = \frac{e - a^2 + ae}{e} < 0$$

当 $-2\ln a > -1$ 即 $1 \le a < \sqrt{e}$ 时,有h(x)在 $(-1,-2\ln a)$ 单调递增,在 $(-2\ln a,+\infty)$ 递减

所以
$$h(x) \le h(-2 \ln a) = -2 \ln a + a - 1$$

$$\Rightarrow \varphi(a) = 2 \ln a - a + 1$$
, $h'(a) = \frac{2}{a} - 1 > \frac{2}{\sqrt{e}} - 1 > 0$

所以 $\varphi(a)$ 在 $\left[1,\sqrt{e}\right]$ 单调递增,有 $\varphi(a) \ge \varphi(1) = 0$,所以 $h(x) \le 0$

故 $a \ge 1$ 时, $h(x) \le 0$ 对 $x \in (-1, +\infty)$ 恒成立,即 $x \le a^2 e^x - a$ 对 $x \in (-1, +\infty)$ 恒成立

由 (*) 可知 $\ln(x+1) \le x$ 因此,当 $a \ge 1$ 时, $\ln(x+1) \le a^2 e^x - a$