
高三生物

考生注意:

- 1. 本试卷分选择题和非选择题两部分。满分100分,考试时间75分钟。
- 2. 答题前,考生务必用直径 0.5 毫米黑色墨水签字笔将密封线内项目填写清楚。
- 3. 考生作答时,请将答案答在答题卡上。选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径 0. 5 毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
- 4. 本卷命题范围:高考范围
- 一、单项选择题:本题共13 小题,每小题2分,共26分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. "银烛秋光冷画屏,轻罗小扇扑流萤。天阶夜色凉如水,卧看牵牛织女星。"这是唐代诗人杜牧的一首情景交融的美妙诗句,萤火虫腹部后端细胞内有荧光素,是一种能发光的化合物。下列相关叙述错误的是
 - A. 萤火虫能发光是由于细胞内的化学能转变成了光能
 - B. 萤火虫发光可以相互传递信号,有利于其繁衍后代
 - C. 萤火虫腹部细胞有氧呼吸过程中能产生 NADPH
 - D. 荧光素发光需要的能量直接来自于细胞内的 ATP
- 2. 如图为钠钾泵的工作原理。细胞膜上的钠钾泵逆浓度将 3 个 Na⁺ 移出胞外,同时将 2 个 K 移入胞内。由于膜内带负电的蛋白质和核苷酸的吸引,外漏的 K⁺ 较少,Na⁺ 受浓度梯度和电势能的驱动,漏入细胞内的数量较多,这时往往也需要钠钾泵来发挥作用。下列相关叙述错误的是

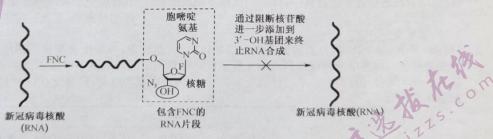
- A. 图中钠钾泵运输 K+和 Na+的过程属于主动运输
- B. 加入蛋白质变性剂会提高 Na 进入细胞的速率
- C. 钠钾泵可维持细胞膜两侧 Na 和 K 的浓度梯度
- D. 钠钾泵将漏入细胞内的 Na 运出细胞,有利于维持细胞的渗透压
- 3. 纺织厂常用枯草芽孢杆菌生产的 α · 淀粉酶除去织物中的淀粉, 为探究 α · 淀粉酶的最适温度, 某科研小组在适宜条件下进行了实验, 棉花初始质量为 5 g, 每组在各自温度下保温 20 min 后测量棉花减重, 结果如下表所示。下列相关叙述错误的是全科免费下载公众号《高中僧课堂》

组别	1	2	3	4	5	6
棉花减重/g	0	0. 12	0. 16	0, 22	0. 23	0. 15
温度/℃	25	35	45	55	65	75

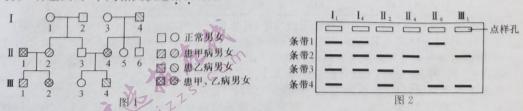
A. α-淀粉酶加快淀粉水解的作用机理是降低化学反应的活化能

新高考 河北

- B. 本实验需要控制的无关变量有保温时间和棉花初始质量等
- C. 随着温度的持续升高, a-淀粉酶的活性也随之上升
- D. 实验结果说明 α-淀粉酶催化作用的最适温度在 65 ℃左右
- 4. 如图为某基因型为 YyRr 的二倍体动物细胞分裂示意图(每幅图都只画出细胞的部分结构及染色体)、下列相关叙述正确的是

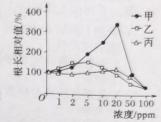

- A. 图中细胞甲与细胞乙的染色体上所携带的基因种类和数量相同
- B. 若细胞乙形成的子细胞大小相同,则丙形成的子细胞大小一定不同
- C. 若细胞乙形成的子细胞大小不同,则丙形成的子细胞大小一定相同
- D. 若细胞丙由细胞甲连续分裂产生,则该过程中中心粒复制了两次
- 5. 某二倍体植物的性别决定方式为 XY 型。其抗病与感病是一对相对性状,受一对等位基因控制,为研究该对性状遗传规律进行了如下实验,不考虑突变和互换。

实验一:抗病甲植株(♀)与感病植株(∢)杂交,子代全为抗病(♂);

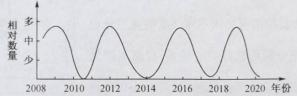

实验二:抗病乙植株(♀)与感病植株(♂)杂交,子代为抗病(♂):感病(♂)=1:1。

下列判断正确的是

- A. 控制该植物抗病与感病的基因一定仅位于 X 染色体上
- B. 植株感病对抗病为显性且感病性状只出现在雄性中
- C. 推测控制该植株感病的基因只有纯合时受精卵才不能正常发育
- D. 若将抗病乙(子)与抗病(含)杂交,则子代可能全为抗病个体
- 6. 近日国家药监局根据《药品管理法》相关规定,附条件批准某生物科技有限公司阿扎夫定片(FNC)治疗新冠病毒肺炎适应症的注册申请。FNC是我国自主研发的口服小分子新冠病毒肺炎治疗药物,其治疗新冠病毒原理如图所示。下列相关叙述正确的是



- A. 用放射性32P标记的新冠病毒侵染大肠杆菌能够探究其遗传物质
- B. 据图可知新冠病毒遗传信息传递的过程为 RNA→DNA→RNA→蛋白质
- C. FNC 通过抑制新冠病毒逆转录的过程来抑制其在宿主细胞中增殖
- D. FNC 通过阻断核苷酸添加到 3'- OH 基团阻止了该处磷酸二酯键的形成
- 7. 某家族涉及甲、乙两种单基因遗传病,甲病由 A、a 控制,乙病由 B、b 控制,且乙病致病基因位于 X 染色体上。小组成员对该家族部分个体的这两对基因进行凝胶电泳分离,得到如图 2 所示带谱(四种条带各代表一种基因)。下列相关叙述错误的是



- A. 电泳带谱中条带 2 代表的是基因 a
- B. I₁、I₃以及Ⅲ₃基因型一定相同
- C. 若对 II。的相关基因进行电泳分离将得到三条条带
- D. 若III。与仅患甲病的男性婚配,则生一个两病皆患孩子的概率为 1/8

- 8. 随着海水的升温, 珊瑚虫易受到施罗氏弧菌感染, 从而导致白化。科学家先用抗生素处理海水, 杀死这些细菌, 然后提高水箱里海水的温度, 此时珊瑚就不会白化。10年后, 重复以上实验珊瑚均白化。下列相关叙述错误的是
 - A. 珊瑚虫中施罗氏弧菌对抗生素的抗性增强 B. 珊瑚虫与施罗氏弧菌之间发生了协同进化 C. 抗生素处理可能使施罗氏弧菌发生了定向变异 D. 珊瑚虫与升温的海水之间发生了协同进化
- 9. 抗震救灾过程中发现部分幸存者会出现"挤压综合征",因四肢或躯干等肌肉丰富的部位遭受重物(如石块、土方等)长时间的挤压,肌肉大量释放的肌红蛋白、钾等物质迅速进入血液,引起心肾功能衰竭。下列相关叙述错误的是
 - A. 施救过程中应为幸存者静脉滴注生理盐水
 - B. 肌红蛋白和钾离子都是内环境的重要组成成分
 - C. 心肾功能衰竭可能与伤者血浆渗透压过高有关
 - D. 内环境维持稳态的机制是神经一体液-免疫调节网络
- 10. 研究人员从真菌中提取到甲、乙、丙 3 种物质,分别探究不同浓度的 3 种物质对洋葱根生长的影响,结果如图所示。下列相关叙述错误的是
 - A. 这3种物质对洋葱根的生理效应与生长素相似,但它们不是植物激素
 - B. 当物质浓度大于 20 ppm 时, 这 3. 种物质都抑制了洋葱根的生长
 - C. 浸泡扦插枝条促进插条生根,最好选用甲物质配制的溶液
 - D. 它们在细胞水平上起着促进洋葱根细胞的伸长、生长,诱导细胞分化等作用

11. 自然界的生物种群大多已达到平衡,这种平衡是动态平衡,许多物理和生物因素都影响种群的出生率和死亡率,种群通过自我调节使种群保持平衡。如图表示某地一个鼠种群数量的周期性变化曲线图,下列相关叙述错误的是

- A. 鼠种群有规律的波动和密度制约因素的作用有关,其作用越强,死亡率越高
- B. 当鼠种群数量较小时,种群数量一直处于增加趋势,此时出生率大于死亡率
- C. 根据图中曲线变化可以看出,该种鼠的生殖周期为4年,种群数量先增加后下降
- D. 随着鼠种群数量变化,作为食物的当地植物数量也会呈现类似的变化曲线
- 12.2022年8月以来,受持续高温少雨和长江来水偏少的共同影响,鄱阳湖水位快速下降,鄱阳湖进入极枯水期,给工农业生产及居民生活供水带来了极大的压力。下列相关叙述错误的是
 - A. 鄱阳湖能有效地控制洪水和防治土壤沙化,体现了生物多样性的间接价值
 - B. 随着丰水期与枯水期的交替出现,生态系统中的种间关系可能会发生改变
 - C. 鄱阳湖枯水期内该区域中的所有动物和微生物共同构成完整的生态系统
 - D. 生活用水的循环使用、农作物科学合理灌溉等可以减轻干旱带来的用水压力
- 13. 下列有关家庭制作果酒、果醋的叙述,错误的是
 - A. 制作果酒与制作果醋的主要微生物的细胞结构存在明显差异
 - B. 制作果酒时,对葡萄进行酒精浸泡或反复冲洗有利于果酒发酵
 - C. 制作果醋时,接种优良的醋酸菌可以提高发酵速度和产品质量
 - D. 两种发酵都可通过控制温度与氧气实现对发酵过程的有效控制
- 二、多项选择题:本题共5小题,每小题3分,共15分。在每小题给出的四个选项中,有两个或两个以上选项符合题目要求,全部选对得3分,选对但不全的得1分,有选错的得0分。
- 14. 细胞增殖异常活跃是肿瘤的显著特征之一。研究发现,谷氨酰胺合成酶(GS)是生物体内唯一催化谷氨酰胺生成的关键酶,可推动肿瘤细胞自有丝分裂中期到后期的转化进而促进细胞增殖,最终推动细胞分裂的进程。下列相关叙述正确的是
 - A. 原癌基因突变导致其表达的蛋白质活性过强,可能引起细胞发生癌变
 - B. 肿瘤细胞在适宜条件下能进行无限增殖, GS 的存在可缩短肿瘤细胞的细胞周期
 - C. 在肿瘤组织中免疫细胞清除癌细胞的过程属于细胞坏死,与细胞内的基因无关
 - D. 欲彻底消灭癌症患者体内的肿瘤细胞,可采用抑制细胞内 GS 基因表达的方法

- - A. 该植株控制花色的基因 A 与基因 a 的本质区别是碱基(核苷酸)的排列顺序不同
 - B. 若某红花植株的自交后代未发生性状分离,则其基因型为 AAbbcc
 - C. 若基因型为 AaBbCc 的白花植株自交,后代的表型及比例为白花:红花:紫花-49:6:9
 - D. 若将基因型为 AaBbCc 和 AabbCc 的植株杂交,后代产生的白花植株的基因型 水色有 12 种
- 16. 动物通过各种内分泌腺或内分泌细胞分泌激素调节动物 机体的新陈代谢、生长、发育、生殖及其他生理机能,使机 体维持正常的生理状态。如图为 X 激素的作用机理模式 图。下列相关叙述错误的是
 - A. 囊泡上的转运蛋白转移到细胞膜上的过程体现了生物膜的流动性
 - B. X 激素能催化葡萄糖转化和葡萄糖转运蛋白向细胞膜上转运
 - C. X 激素与胰高血糖素在调节血糖相对稳定方面存在协同关系
 - D. 该过程体现了细胞膜具有进行细胞间信息交流的功能
- 17. 食用菌与水稻轮作是一种生态高效的新型栽培模式,可根据当地的实际灵活选择栽培的食用菌。某地采用赤松茸与水稻轮作,建立了图示栽培模式,可充分利用环境资源。下列相关叙述错误的是
 - A. 赤松茸可直接利用秸秆发酵中的物质,从而实现了能量循环
 - B. 该生态系统中水稻和食用菌可利用不同强度的光照合成 有机物
 - C. 该生态农业模式能充分利用秸秆中的能量,提高了能量 传递效率
 - D. **菌糠和**秸秆的利用实现了物质循环利用,为水稻和菌种 提供无机物
- 赤松茸瀬种 接种 整菇 → 产品 新糠 本稻 → 有机肥 水稻 → 有机肥

基因A

细胞膜

激素X受体

红色

葡萄糖

葡萄糖转运蛋白

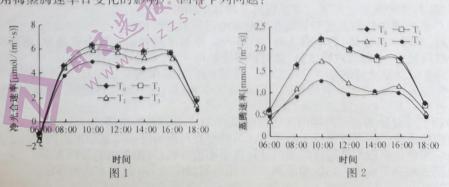
00

葡萄糖转运蛋白储存于

细胞膜内的囊泡上

西红(

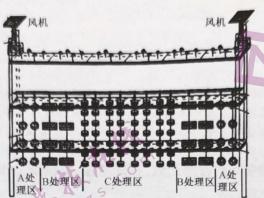
ADP+Pi


脂肪酸 糖原

促进葡萄糖转化

酶的磷酸化

蛋白质


- 18. 研究发现,通过特定的信息分子诱导雌性小鼠的胚胎干细胞逐步分化,最终能产生大量与卵巢体细胞类似的胚胎卵巢体细胞。这些细胞与来自小鼠胚胎干细胞的卵母细胞放在一起共同培养时产生了卵巢卵泡结构,而卵母细胞在该结构中发育成了有活力的卵子。这些体外培养的卵子可以完成受精,将受精后的卵子移植到雌性小鼠子宫内,小鼠繁殖出了健康的后代。下列相关叙述正确的是
 - A. 动物的胚胎干细胞具有细胞核大、核仁明显和蛋白质合成旺盛等特点
 - B. 体外培养胚胎干细胞时,培养液中通常添加动物血清、蔗糖等营养成分
 - C. 在分化诱导因子诱导下,小鼠的胚胎干细胞经基因选择性表达而形成卵泡结构
 - D. 卵母细胞在卵泡结构中发育成了有活力卵子的过程中其染色体数目会减半
- 三、非选择题:本题共5小题,共59分。
- 19. (11分)为了探究雾霾浓度对园林植物生长代谢的影响,研究人员以三角梅为实验材料,研究 $O(T_o)$ 、75(T_i)、150(T_o)、300(T_o) $\mu g/m^3$ 4组不同浓度的模拟雾霾胁迫对三角梅光合特性的影响(其他实验条件相同),实验结果如图所示(图 1表示模拟雾霾对三角梅净光合速率日变化的影响;图 2表示模拟雾霾对三角梅蒸腾速率日变化的影响)。回答下列问题:

【高三开学考・生物 第4页(共6页)】

(1)	三角梅叶片中的光合色	素分布在叶绿体	的	上,纸层析法	分离叶片中光台	台色素的原理
	是			0		ROY
	图 1 中 8:00~10:00 的		提高主要是因	为	,从光照角	角度分析雾霾
	胁迫影响光合速率的原见 比较 T。~T。各组,雾霾肌		北影响蒸 縢油	京玄。上述 4 组	实验植物均虫和	一个"午休"和
	象。发生"午休"时,蒸腾				東率也会影响到	
	写出蒸腾速率引起光合适				1	
	研究表明,光照过强可使					
	光合速率大幅降低,出现			AND RESIDENCE OF THE PARTY OF T		
,	起的 D1 蛋白含量下降。	以二用牳刃头	短材料,设订	头短短此该结	化。項间安与	出头短忠政:
0. (12	分)全红婵在布达佩斯世	世界游泳锦标赛中	中勇夺跳水 3	米板/10 米台港	昆合全能金牌、女	了子单人十米
	银牌、女子双人十米跳台					
	当运动员全神贯注进行比					
	交感神经和副交感神经均 节作用通常是相反的,这			出 및 传入或1	专出) 仲经, 利臣	可一益目的洞
	当运动员刚进入寒冷的比			系列生理反应,	机体通过神经训	問节和体液调
1	节维持体温的相对恒定。		過节的反射弧	瓜是:		
-		立器。机体内	ertit M.		等激素的	的含量升高可
	吏机体产热增加,这些激 运动员在比赛过程中心路			制心脏活动时	在神经元与心理	细胞之间佳
	单的是化学信号,科学家					
	养液中,A有某副交感神				ACCOUNT OF THE PARTY OF THE PAR	;
77	人A心脏的营养液中取					•
	运动员在进行比赛的过程	呈中,体内的血糖	不断被消耗,			
	唐是通过 內激素是			_特到怀兀的,	在此过程中起主	上安炯卫作用
	分)萝卜(2n=18)为典型	的异花授粉植物	物,自交衰退严	重,杂种优势	明显。利用雄性	上不育系进行
	制种是当前萝卜杂种优					
	1~R5 纯合可育萝卜品	系进行杂交实验	,F ₁ 群体均表3	见为可育,F ₁ 自	交获得的人群	体如表所示。
四合	下列问题:		F ₂ 群体		22	
		三本45米		chell Mahall	THIN CORELL	
		可育株数	不育株数	实际分离比	理论分离比	
	A2×R1	438	7	62. 57 : 1	63:1	
	A2×R2	512	39	13, 13 : 1	15:1	
	AZAKZ	0.0	00	15, 15 • 1	19.1	
	A2×R3	57	4	14, 25 : 1	15:1	
	A2×R3	57	4	14, 25 : 1	15:1	
(1)科	$A2 \times R3$ $A2 \times R4$ $A2 \times R5$	57 328 81	21 22	14, 25 : 1 15, 62 : 1 3, 68 : 1	15 : 1 15 : 1 3 : 1	五体 上。2021
	A2×R3 A2×R4	57 328 81 人	4 21 22 8谱,并将其中	14, 25:1 15, 62:1 3, 68:1	15:1 15:1 3:1 条染(5 体上。2021 基因渗入,对
年 11	A2×R3 A2×R4 A2×R5 学家成功解析了萝卜的 8月,中国农科院蔬菜	57 328 81 7大部分基因组图 花卉研究所为深 基型材料进行基	4 21 22 图谱,并将其中 人了解萝卜物 因组组装,构	14, 25:1 15, 62:1 3, 68:1 的基因定位在 初种间和物种内	15:1 15:1 3:1 条染化 内的遗传变异和	基因渗入,对
年 11 间	A2×R3 A2×R4 A2×R5 学家成功解析了萝卜的 8月,中国农科院蔬菜 份覆盖萝卜属资源的更	57 328 81 7大部分基因组织 化产研究所为深 块型材料进行基层 代育性分别表现	4 21 22 到谱,并将其中 人了解萝卜物 因组组装,构奏	14, 25:1 15, 62:1 3, 68:1 的基因定位在 初种间和物种内	15:1 15:1 3:1 条染化 内的遗传变异和	基因渗入,对
年 11 间 在	A2×R3 A2×R4 A2×R5 学家成功解析了萝卜的 8月,中国农科院蔬菜份覆盖萝卜属资源的更杂交时,引来交时,引要卜正常繁殖过程中,	57 328 81 7大部分基因组图 化在研究所为深 典型材料进行基层 代育性分别表现 基因渗入只能发	4 21 22 图谱,并将其中 人了解萝卜物 因组组装,构致 见为 生在物种内。	14, 25:1 15, 62:1 3, 68:1 的基因定位在 初种间和物种型 里高质量的基	15:1 15:1 3:1 条染色 外的遗传变异和 基因组图谱,其中	基因渗入,对中萝卜在物种,
年 11 间 在 (2)在	A2×R3 A2×R4 A2×R5 学家成功解析了萝卜的 8月,中国农科院蔬菜 份覆盖萝卜属资源的更	57 328 81 7大部分基因组图 化在研究所为深 典型材料进行基层 代育性分别表现 基因渗入只能发	21 22 图谱,并将其中 人了解萝卜物 因组组装,构延 见为 生在物种内。 居杂交结果可	14, 25:1 15, 62:1 3, 68:1 中的基因定位在 切种间和物种型 里高质量的基	15:1 15:1 3:1 条染色 外的遗传变异和 基因组图谱,其中	基因渗入,对中萝卜在物种
年 11 间 在 (2)在 由	A2×R3 A2×R4 A2×R5 学家成功解析了萝卜的 8月,中国农科院蔬菜 份覆盖萝卜属资源的更杂交、物种内杂交时,到 一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	57 328 81 7大部分基因组织 化产研究所为深 块型材料进行基层 代育性分别表现 基因渗入只能发 。根据	21 22 公 22 公 22 公 3 公 4 2 公 4 八 7解萝卜物 因组组装,构致 见为 生在物种内。 居杂交结果可类	14, 25:1 15, 62:1 3, 68:1 中的基因定位在 初种间和物种内 建更高质量的基	15:1 15:1 3:1 条染色 外的遗传变异和 基因组图谱,其写	基因渗入,对中萝卜在物种
年 11 间 在 (2)在 由 (3)在	A2×R3 A2×R4 A2×R5 学家成功解析了萝卜的 8月,中国农科院蔬菜份覆盖萝卜属资源的身份交次物种内杂交时,可要卜正常繁殖过程中,是杂交实验中 A2 只能作是	57 328 81 7大部分基因组织 化产研究所为深 典型材料进行基层 代育性分别表现 基因渗入只能发 。根据 新的依据是 ,雄性可育群体	21 22 图谱,并将其中 人了解萝卜物 因组组装,构延 见为 生在物种内。 居杂交结果可类	14, 25:1 15, 62:1 3, 68:1 中的基因定位在 初种间和物种内 里更高质量的基 即断雄性不育的 根据杂交结果可	15:1 15:1 3:1 条染色 外的遗传变异和 基因组图谱,其写	基因渗入,对中萝卜在物种,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

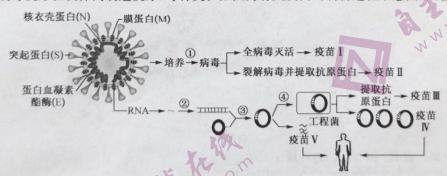
22. (11 分)科研人员设计了一种立体生态浮床用于水体水质提升、黑臭水体净化和水体景观修复,浮床分水生植物层和深度处理层。上层污水进入水生植物层,水生植物和藻类同时利用水生植物吸收水中 N、P 营养元素。深度处理层从外到内分为 B 和 C 处理区,下层污水依次进入 B 和 C 处理区, A 处理区通过废弃软壳(主要为鸡蛋壳)富集微生物及微小动物并吸附 P 元素, B 处理区通过水生动物消化作用将难降解性污染物分解或者转化, C 处理区通过人工介质(主要为聚乙烯和涤纶丝) 富集微生物,去除水中污染物。回答下列问题:

(1)建立立体生态浮床时,选择和搭配植物需要考虑的因素有

(写出两点),流经该人工生态系统的总能量是

(2)在答题纸的相应位置,用箭头补全该生态系统中生产者、消费者、分解者之间的能量流动关系。

生产者


消费者

分解者

(3)该立体生态浮床最上面有风机不断向浮床吹风,目的是

(4)流经该生态浮床的水体中含有大量的 N、P,请从种间关系的角度分析,该生态浮床还能抑制水华发生的原因是。

23. (12 分)新冠疫苗在全球抗击新冠疫情中做出巨大贡献,疫苗种类主要有灭活疫苗(将病毒灭活处理、使其失去传染性和致病性,但保留了抗原性)、亚单位疫苗(通过各种方式培养病毒抗原蛋白,如多蛋白,之后经过纯化制备而成)、病毒载体疫苗(通过基因工程技术将表达抗原蛋白的基因移植到其他病毒上进行培养,让新的病毒产生新冠病毒的抗原蛋白)、核酸疫苗(通过基因工程技术制作新冠病毒的核酸,让病毒抗原在机体内制造抗原)等种类。如图为有关疫苗的制备过程示意图,回答下列问题:

- (1)准确、快速判断个体是否被新冠病毒感染是实现动态清零的前提。人体感染新冠病毒初期,核酸检测阳性,抗体检测阴性,主要原因是 免疫尚未被激活。
- (2)过程①不能用普通培养基培养,原因是_____

。疫苗Ⅰ发

挥免疫预防的机理是 (3)过程②需要在

过程②需要在 酶的催化下才能完成。过程③构建基因表达载体时通常不采用同一种相同的限制酶,而是采用双酶切法,双酶切的优点是

(4)过程④通常使用

处理受体菌,使其处于

(生理状态)。

(5)疫苗Ⅳ和疫苗 V 进入人体后,均能发挥免疫预防作用,二者产生 S 蛋白的过程不同,表现为。若疫苗 V 为腺病毒疫苗,构

建腺病毒载体时需将腺病毒的复制基因敲除,目的是

【高三开学考・生物 第6页(共6页)】

新高考 河北

高三生物参考答案、提示及评分细则

- 1. C 萤火虫能发光是由于细胞内的化学能转变成了光能,使得荧光素发光,A 正确;萤火虫发光可以相互传递信号,有利于种群繁衍后代,B 正确;萤火虫腹部细胞有氧呼吸过程中能产生 NADH,C 错误;荧光素发光需要细胞提供能量,能量直接来自 ATP,D 正确。
- 2. B 由图可知,钠钾泵运输 K^+ 和 Na^+ 的过程属于主动运输,A 正确;加入蛋白质变性剂会抑制 Na^+ 跨膜运输速率,B 错误;钠钾泵可以维持细胞膜两侧 K^+ 和 Na^+ 的浓度差,实现膜外较高的 Na^+ 浓度和膜内较高的 K^+ 浓度,C 正确;根据题意,钠钾泵将漏入细胞内的 Na^+ 运出细胞,有利于保持细胞的渗透压,D 正确。
- 3. C 酶是活细胞产生的具有催化作用的有机物,能降低化学反应所需的活化能,A 正确;本实验的目的为探究 α -淀粉酶的最适温度,故本实验中自变量为温度,需要控制的无关变量包括保温时间、棉花初始质量及 pH 等条件,B 正确;由表可知,在其他条件不变的情况下,随着温度的持续升高,酶的活性先上升后降低,C 错误;在本实验中,温度为 65 ℃的实验组棉花减重量最大,说明其分解淀粉的效果最好,故该酶的最适温度范围为 55~75 ℃,D 正确。
- 4. D 甲为有丝分裂后期,乙为减数分裂 I 后期,丙为减数分裂 II 后期,根据基因型乙残缺图中染色体所携带的基因种类和数量不可能相同,A 错误;若细胞乙形成的子细胞大小相同,则该动物为雄性个体,则丙形成的子细胞大小一定相同,B 错误;若乙形成的子细胞大小不同,则该动物为雌性个体,丙形成的子细胞大小可能相同,也可能不同,C 错误;甲的子细胞为精原细胞,继续分裂至减数分裂 II 后期,中心粒复制了两次,D 正确。
- 5. D 由题意可知,两组实验的子代都为雄性个体,推测控制该植物抗病与感病的基因与性别有关,且存在致死现象。通过题干可知抗病对感病为显性,假设用 A/a 基因控制。进一步分析,抗病乙($^{\circ}$)植株与感病($^{\circ}$)植株杂交,子代为抗病($^{\circ}$):感病($^{\circ}$)=1:1,子代雄性有 2 份,理论上雌性也应该为 2 份,故出现 4 份组合数,亲本可能为 $X^{A}X^{a}$ 与 $X^{a}Y^{a}$ $X^{a}Y^{a$
- 6. D 新冠病毒不能感染大肠杆菌,A 错误;根据题干信息,新冠病毒为复制型病毒,B 错误;FNC 通过抑制新冠病毒复制的过程来抑制其增殖,C 错误;相邻的核苷酸通过磷酸二酯键形成,D 正确。
- 7. C 电泳带谱中条带 1 代表的是基因 A,条带 2 代表的是基因 a,条带 3 代表的是基因 b,条带 4 代表的是基因 B,A 正确; I₁、I₃以及Ⅲ₃基因型一定相同,均为 AaX^BX^b,B 正确; IⅠ₅的基因型为 AAX^BX^b或 AaX^BX^b,若对 II₅的基因进行电泳分离将得到三条或四条条带,C 错误; III₃基因型为 AaX^BX^b,与仅患甲病 aaX^BY 的男性婚配,则生一个两病皆患孩子的概率为 1/2×1/4=1/8,D 正确。
- 8. C 由于抗生素的选择作用,使珊瑚虫中抗施罗氏弧菌对抗生素的抗性增加,A正确;珊瑚虫与施罗氏弧菌之间发生了协同进化,B正确;D正确;根据题干信息不是抗生素诱导施罗氏弧菌变异,C错误。
- 9. B 静脉滴注生理盐水,有利于增加幸存者的液体含量,维持内环境稳态,A 正确;肌红蛋白存在于肌肉细胞,不属于内环境的组成成分,B 错误;肌肉大量释放的肌红蛋白、钾等物质迅速进入血液,使血浆渗透压迅速升高,C 正确;内环境维持稳态的机制是神经一体液一免疫调节网络,D 正确。
- 10. B 这 3 种物质在低浓度时促进生长,高浓度时抑制生长,其生理效应与生长素相似,但是植物激素是植物体产生的,而它们是真菌体内分离的,所以不是植物激素,A 正确;当浓度大于 20 ppm 时,相对于 0 ppm,甲在 20~50 ppm 范围内仍然是促进根的生长,B 错误;因为甲物质对促进根的生长较明显,所以选择甲物质处理插条,C 正确;这 3 种物质与生长素有相似的生理效应,在植物体内,生长素在细胞水平上就促进细胞伸长、生长,诱导细胞分化等作用,D 正确。
- 11. C 鼠种群有规律的波动和密度制约因素的作用有关,密度制约因素的作用越强,鼠种群内部因生存斗争死亡的个体越多,死亡率越高,A正确;当鼠种群数量较小时,种群数量一直处于增加趋势,此时出生率大于死亡率,B正确;根据图中曲线变化可以看出,该种鼠种群数量的变化周期为4年,不是生殖周期为4年,C错误;随着鼠种群数量变化,作为其食物的当地植物也会呈现与鼠种群数量类似的变化曲线,D正确。全科免费下载公众号《高中僧课堂》
- 12. C 鄱阳湖有效地控制洪水和防治土壤沙化发挥的是重要的生态功能,体现了生物多样性的间接价值,A 正确;随着丰水期与枯水期的交替出现,生物生活的环境发生了改变,种间关系可能会发生改变,B 正确;该生态系统中的生物群落和无机环境构成的统一整体构成完整的生态系统,C 错误;生活用水的多次使用、合理灌溉等,提高了水的利用率,起到了节水的目的,D 正确。
- 13. B 制作果酒的主要微生物是真核生物酵母菌,制作果醋的主要微生物是原核生物醋酸菌,两者的细胞结构存在明显区别,A 正确;制作果酒时,若对葡萄进行酒精浸泡或多次反复冲洗,会减少野生酵母菌的数量,不利于果酒发酵,B 错误;制作果醋时,接种优良的醋酸菌可以抑制其他微生物的生长,提高果醋发酵速度和产品质量,C 正确;果酒发酵的适宜条件是先通氧后密封,温度为 $18\sim30$ ℃,果醋发酵的适宜条件是持续通入无菌空气,温度为 $30\sim35$ ℃,D 正确。

- 14. AB 原癌基因突变导致其表达的蛋白质活性过强,可能引起细胞发生癌变,A正确;肿瘤细胞在适宜条件下具有无限增殖的能力,GS可促进细胞增殖,从而缩短肿瘤细胞的细胞周期,B正确;免疫细胞清除癌细胞的过程属于细胞凋亡,C错误;如果抑制 GS基因的表达,则正常细胞的代谢也会受到影响,因此不能采取抑制 GS基因表达的方法消灭癌细胞,D错误。
- 15. ABD 基因 A 与基因 a 的本质区别是碱基(核苷酸)的排列顺序不同, A 正确; 某红花植株进行自交, 若后代未发生性 状分离,则该红花的基因型为 AAbbcc, B 正确; 基因型为 AaBbCc 的植株花色为白色, 其自交后代中紫花(A_bbC_)所 占比例为 $(3/4)\times(1/4)\times(3/4)=9/64$, 红花(A_bbcc)所占比例为 $(3/4)\times(1/4)\times(1/4)=3/64$, 白花所占比例为 1- (9/64)-(3/64)=52/64, 故 AaBbCc 自交后代的表型及比例为白花:红花:紫花=52:3:9, C 错误; 若将基因型为 AaBbCc 和 AabbCc 的植株杂交,后代的基因型有 $3\times2\times3=18$ 种,白花基因型有 12 种,D 正确。
- 16. BC 囊泡上的转运蛋白转移到细胞膜上的过程依赖膜的融合,体现了生物膜的流动性,A 正确;图示激素 X 与激素 X 受体结合后,可促进 ATP 水解,进而使酶发生磷酸化,促进葡萄糖转化,同时能促进葡萄糖转运蛋白向细胞膜上转运,增加了细胞膜上葡萄糖转运蛋白的含量,促进了葡萄糖的吸收,使血糖降低,因此激素 X 可能是胰岛素,X 激素与胰高血糖素在调节血糖方面存在拮抗关系,B 错误,C 错误;激素与相应的受体结合,体现了细胞膜具有进行细胞间的信息交流的功能,D 正确。
- 17. ABC 赤松茸为分解者,可利用秸秆发酵产生的物质,能量不能直接被利用,A 错误;食用菌属于分解者,不能进行光合作用,B 错误;该生态农业模式,充分利用秸秆中的能量,但不能提高营养级之间的能量传递效率,C 错误;菌糠和秸秆的利用实现了物质循环利用,分解产生的无机物可直接为水稻和菌种所利用,D 正确。
- 18. ACD 胚胎干细胞具有细胞核大、核仁明显和蛋白质合成旺盛等特点,A正确;体外培养胚胎干细胞时,培养液中通常加入动物血清、葡萄糖等成分,早期胚胎培养的培养液一般不用蔗糖,B错误;在分化诱导因子诱导下,小鼠的胚胎干细胞经基因选择性表达而形成卵泡结构,C正确;卵母细胞在卵泡结构中进行减数分裂,发育成了有活力的卵子,过程中染色体数目减半,D正确。
- 19. (除注明外,每空1分,11分)
 - (1)类囊体薄膜 不同色素在层析液中溶解度不同而扩散速度不同
 - (2)光照强度不断增大 雾霾一定程度上会降低光照强度(2分)
 - (3)部分气孔关闭 蒸腾速率影响气孔开闭,影响 CO_2 供应;蒸腾速率影响叶片的温度(蒸腾速率影响水分和矿质元素的供应,2分)
 - (4)将生长状况相同的三角梅均分成三组,分别在强光照、强光照加 Ca²⁺处理和适宜光照三种条件下培养,其他条件相同且适宜,培养一段时间后,检测各组 D1 蛋白含量(合理即可,3 分)
- 20. (除注明外,每空1分,共12分)
 - (1)交感神经 传出 可以使机体对外界刺激作出更精确的反应,使机体更好地适应环境的变化(2分)
 - (2)皮肤冷觉感受器→传入神经→下丘脑体温调节中枢→传出神经(2分) 甲状腺激素、肾上腺素 使肝及其他组织细胞的代谢活动增强,增加产热
 - (3)减慢 减慢
 - (4) 肝糖原的分解、非糖物质的转化 胰高血糖素
- 21. (除注明外,每空1分,共13分)
 - (1)9 物种间不能相互杂交产生可育后代,在物种内杂交可产生可育后代(2分)
 - (2)母本 隐性 雄性不育与可育的个体杂交, F_1 均表现为雄性可育(F_1)为雄性可育,自交后 F_2 中出现雄性不育的个体) 3 根据 A2 和 R1 的杂交结果中雄性不育个体所占的比例为 1/64, $(1/4)^3 = 1/64$ (2分)
 - (3)1/9 R2 与 R5 杂交, F_1 自交, 观察 F_2 中是否出现雄性不育的个体。如果子代中出现一定比例的雄性不育个体,则 R2 与 R5 中控制雄性可育的基因不是相同基因, 否则 R5 与 R2 中控制雄性可育的基因中有相同基因(合理即可, 3 分)
- 22. (除注明外,每空 2分,共 11分)
 - (1)植物是否可以净化水质、植物是否适应水生环境和当地气候条件 生产者固定的太阳能和污水中有机物所含的化学能

- (3)为水生动植物及好氧微生物提供氧气,有利于生物生长及对污染物的分解或转化
- (4) 浮床植物和该水域浮游藻类都属于植物,它们之间存在竞争关系,竞争太阳光能和 N、P 等无机盐,抑制了藻类的大量繁殖(3分)
- 23. (除注明外,每空1分,共12分)
 - (1)体液
 - (2)新冠病毒只有寄生在宿主细胞中才能增殖(在普通培养基中不能增殖) 病毒抗原注人人体后,刺激 B 淋巴细胞,B 淋巴细胞增殖分化成记忆细胞和浆细胞,后者产生抗体,记忆细胞和抗体起到免疫预防的作用(2分)
 - (3)逆转录 防止目的基因及质粒各自自身连接,有利于目的基因的正向连接(2分)
 - (4)Ca²⁺ 感受态
 - (5)疫苗Ⅳ进入细胞核进行转录,然后在细胞质中翻译,产生S蛋白;疫苗Ⅴ进入细胞质,经过翻译产生S蛋白,引起免疫反应(2分) 使腺病毒的核酸无法复制,无法在人体细胞中增殖