第十三次适应性训练文科数学答案

一. 选择题: 本题共 12 小题, 每题 5 分, 共 60 分.在每小题给出的四个选项中, 只有一项是符合题目要求的.

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	Α	В	С	D	D	С	D	Α	В	С	С	В

二.填空题:本题共4小题,每题5分共20分.

13.
$$-8$$
 14. $-\frac{31}{2}$ 15. $(40+30\sqrt{3})\pi$ 16. $\pm \frac{\sqrt{2}}{4}$

三. 解答题: 共 70 分, 其中 17—21 题每题 12 分, 第 22、23 题, 每题 10 分.

17.解(1)在
$$\triangle ABC$$
中,由正弦定理得: $\frac{a}{\sin A} = \frac{c}{\sin C}$.又 $\frac{\sqrt{3}a}{1+\cos A} = \frac{c}{\sin C}$

所以,
$$\frac{\sqrt{3}a}{1+\cos A} = \frac{a}{\sin A}$$
.所以, $\sqrt{3}\sin A = 1+\cos A$,即 $\sqrt{3}\sin A - \cos A = 1$,

即
$$\sin(A - \frac{\pi}{6}) = \frac{1}{2}$$
,又 $A \in (0, \pi)$,所以 $A - \frac{\pi}{6} \in (-\frac{\pi}{6}, \frac{5\pi}{6})$,所以 $A - \frac{\pi}{6} = \frac{\pi}{6}$,即 $A = \frac{\pi}{3}$.

(2) 由 (1) 及题意知
$$\triangle ABC$$
 中, $a = \sqrt{3}, c - b = \frac{\sqrt{6} - \sqrt{2}}{2}, A = \frac{\pi}{3}$.

由余弦定理得 $a^2 = b^2 + c^2 - 2bc \cos A$,即 $3 = (c-b)^2 + bc$.所以 $bc = 1 + \sqrt{3}$,

所以
$$S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \times (1 + \sqrt{3}) \times \frac{\sqrt{3}}{2} = \frac{3 + \sqrt{3}}{4}$$

18. (1) 证明: 因为 $AC_1 \perp A_1C$, $AC_1 \perp BD$, $A_1C \cap BD = D$, $A_1C,BD \subset \overline{\mathrm{in}}\ A_1BC$.

所以, $AC_1 \perp$ 面 $A_1BC .$ 又 $BC \subset$ 面 A_1BC ,所以 $AC_1 \perp BC$,又 $\angle ACB = 90^\circ$ 即 $BC \perp AC$ 而 $AC \cap A_1C = A$, $AC, A_1C \subset$ 面 ACC_1A_1 ,所以 $BC \perp$ 面 ACC_1A_1 .又因为 $BC \subset$ 面ABC 所以,面 $ACC_1A_1 \perp$ 面ABC.

(2) $BC \perp m \ ACC_1A_1 \perp BC \parallel B_1C_1$,则 $B_1C_1 \perp m \ ACC_1A_1$,则 $B_1C_1 \perp A_1C_1$,则 $B_1D = \sqrt{3}$ 由 $AC_1 \perp m \ A_1BC \perp BC \parallel B_1C_1$ 得 B_1 到面 A_1BC 的距离 $h=C_1D=\sqrt{2}$,

所以 B_1D 与平面 A_1BC 所成角的正弦值为 $\frac{h}{B_1D} = \frac{\sqrt{2}}{\sqrt{3}} \frac{\sqrt{6}}{3}$.

19. (1) 设样本容量为 n,则 $\frac{60}{n}$ = $(0.028 + 0.032) \times 10$,得 n=100,样本容量为 100.

设本次竞赛成绩的中位数为 x,则 $0.08+0.2+(x-70)\times0.032=0.5$,得 x=76.875

抽取的学生竞赛成绩的平均数 $\bar{x} = 55 \times 0.08 + 65 \times 0.2 + 75 \times 0.32 + 85 \times 0.28 + 95 \times 0.12 = 76.6$.

(2) $\overline{x} - \sigma = 76.6 - 11 = 65.6, \overline{x} + \sigma = 76.6 + 11 = 87.6$,则抽取学生在 $(\overline{x} - \sigma, \overline{x} + \sigma)$ 内的频率为 $(70-65.6)\times0.02+0.32+(87.6-80)\times0.028=0.6208$

全校学生有 1000 人, 竞赛成绩在 $(\bar{x}-\sigma,\bar{x}+\sigma)$ 内的人数 $1000\times0.6208=620.8\approx621$

20. 解(1)因为P(1,1)在C的渐近线 $y = \frac{b}{a}x$ 上,所以a = b,

因为A(a,0),所以 ΔPAO 的面积为 $\frac{1}{2}a=\frac{1}{2}$,解得a=1,所以b=1,

所以C的方程为 $x^2 - y^2 = 1$.

(2) 当直线l的斜率不存在时,不符合题意,舍去

当直线l的斜率存在时,设直线l的方程为 $y-1=k(x-1), M(x_1, y_1), N(x_2, y_2)$,

$$\pm \begin{cases} y-1=k(x-1) \\ x^2-y^2=1 \end{cases}, \quad \{4(1-k^2)x^2-2k(1-k)x-k^2+2k-2=0\}.$$

由
$$\begin{cases} y-1=k(x-1) \\ x^2-y^2=1 \end{cases}$$
 , 得 $(1-k^2)x^2-2k(1-k)x-k^2+2k-2=0$
由 $\begin{cases} 1-k^2 \neq 0 \\ \Delta > 0 \end{cases}$, 得 $k < 1$ 且 $k \neq -1$. 则 $x_1+x_2=\frac{2k}{1+k}$, $x_1x_2=\frac{k^2-2k+2}{k^2-1}$.
直线 AM 的方程为 $y=\frac{y_1}{x_1-1}(x-1)$, 令 $x=x_2$, 得 $G(x_2,\frac{y_1(x_2-1)}{x_1-1})$.

因为H为NG的中点,所以 $H(x_2, \frac{y_1(x_2-1)}{x_1-1} + y_2)$.

所以
$$k_{AH} = \frac{\frac{y_1(x_2 - 1)}{x_1 - 1} + y_2}{\frac{2}{x_2 - 1}} = \frac{1}{2} \left(\frac{y_1}{x_1 - 1} + \frac{y_2}{x_2 - 1} \right)$$

因为
$$\frac{y_1}{x_1-1} + \frac{y_2}{x_2-1} = \frac{k(x_1-1)+1}{x_1-1} + \frac{k(x_2-1)+1}{x_2-1} = 2k + \frac{1}{x_1-1} + \frac{1}{x_2-1}$$
.

所以 $k_{AH}=1$,即直线AH的斜率为定值.

21. (1) 由题设知 $f'(x) = e^x (1 + \frac{a}{x} + a \ln x), (x > 0)$

$$g(x) = e^{-x} f'(x) = 1 + \frac{a}{x} + a \ln x$$
, $g'(x) = \frac{a(x-1)}{x^2} (x > 0)$.

当 $x \in (0,1)$ 时,g'(x) < 0,g(x)为减函数;当 $x \in (1,+\infty)$ 时,g'(x) > 0,g(x)为增函数.

故 $g(x)_{\min} = g(1) = 1 + a$,由于 $g(x) \ge 2$ 恒成立,故 $1 + a \ge 2$,故 $a \ge 1$.

(注: 也可分离参数)
(2) 设
$$h(x) = f'(x) = e^x (1 + \frac{a}{x} + a \ln x)$$
 , 则 $h'(x) = e^x (1 + \frac{2a}{x} - \frac{a}{x^2} + a \ln x)$

设
$$H(x) = 1 + \frac{2a}{x} - \frac{a}{x^2} + a \ln x$$
, $H'(x) = \frac{a(x^2 + 2x + 2)}{x^3} > 0$,故 $H(x)$ 在 $(0,+\infty)$ 上单调递增.

$$\therefore a > 2$$
, $\therefore H(1) = a + 1 > 0$, $H(\frac{1}{2}) = 1 - a \ln 2 < 0$, 故存在 $x_2 \in (\frac{1}{2}, 1)$, 使得 $H(x_2) = 0$

则 h(x) 在 $(0,x_2)$ 上单调递减,在 $(x_2,+\infty)$ 上单调递增.

故 x_2 是h(x)的极小值点,所以 $x_2 = x_1$.

由(1)知, 当a=1时, $\ln x + \frac{1}{x} \ge 1$ (当x=1时取等), 故 $h(x) > h(x_1) = e^{x_1} (1 + \frac{a}{x_1} + a \ln x_1) > e^{x_1} (1+a) > 0$,

故
$$f(x_1) = e^{x_1}(1 + a \ln x_1) = ae^{x_1} \frac{1 - 2x_1}{x_1^2} < 0 = f(x_0)$$
. 又由 (1) 可知 $f(x)$ 在 $(0,+\infty)$ 上单调递增,故 $x_0 > x_1$

$$(x-2a)^2 + y^2 = 4a^2$$
,所以,曲线 C 的参数方程为
$$\begin{cases} x = 2a + 2a\cos\alpha \\ y = 2a\sin\alpha \end{cases}$$
,(α 为参数).

消参得直线l的普通方程为: x+y-2=0.

(2) 由 (1) 知曲线 $_C$ 的直角坐标方程为: $(x-2a)^2+y^2=4a^2$,其轨迹为圆,易知圆心到直线 $_l$ 的距离

小于半径
$$2a$$
,即 $\frac{|2a-2|}{\sqrt{2}} < 2a$,得 $a > \sqrt{2} - 1$.

因为弦 MN 的长为 $2\sqrt{4a^2-(\frac{2a-2}{\sqrt{2}})^2}=2\sqrt{2}\sqrt{a^2+2a-1}$,原点 O 在直线 MN 的距离 $d=\frac{2}{\sqrt{2}}=\sqrt{2}$.

所以
$$S_{\Delta OMN} = \frac{1}{2} \mid MN \mid d = \frac{1}{2} \times 2\sqrt{2} \sqrt{a^2 + 2a - 1} \times \sqrt{2} = 2\sqrt{a^2 + 2a - 1}$$

又 $S_{\Delta OMN}=2\sqrt{7}$,所以 $2\sqrt{a^2+2a-1}=2\sqrt{7}$,得 a=2 或 a=-4 (舍去). 所以实数 a 的值为 2

23.解(1)由题意得

$$f(x) = \begin{cases} 3x, & x \ge 2 \\ -x+8, & -4 < x < 2 \\ -3x, & x \le -4 \end{cases}$$

所以 f(x) 在 $(-\infty,2)$ 上单调递减,在 $(2,+\infty)$ 上单调递增入

因此 f(x) 的最小值 m = f(2) = 6

因此
$$f(x)$$
 的最小值 $m = f(2) = 6$
(2) 由 (1) 知 $a + b + c = 6$
所以 $(\sqrt{a} + \sqrt{b} + \sqrt{c})^2 = a + b + c + 2\sqrt{ab} + 2\sqrt{bc} + a\sqrt{ac}$

由基本不等式 $2\sqrt{ab} \le a+b$, $2\sqrt{bc} \le b+c$, $2\sqrt{ac} \le a+c$

所以 $(\sqrt{a} + \sqrt{b} + \sqrt{c})^2 \le 3(a+b+c) = 18$, 当且仅当a = b = c时等号成立, 即 $\sqrt{a} + \sqrt{b} + \sqrt{c} \le 3\sqrt{2}$.