(在此卷上答题无效)

数学

本试卷共 4 页,22 题。	全卷满分	150 分考试时间	120 分钟
考生注意事项:			

- 1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
- 2.选择题的作答每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。写在试卷草稿纸和答题卡上的非答题区域均无效。
- 3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。写在试卷、草稿纸和答题卡上的非答题区域均无效。
- 4.考试结束后,请将本试卷和答题卡一并上交。
- 一、选择题:本题共 8 小题,每小题 5 分共 40 分在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知集合 A={x l	$\mathbf{n} x \geqslant 0\}, \mathbf{B} = \{x \mid \sqrt{x}\}$	<2},则 A∩B=		
A.[1.2)	B.[1,4)	C.[0,2)		D.[0,4)
2.若复数 z 满足(1-	i)z= 1+ <u>i</u> ,则 z 的虚	部是		
A. $\frac{\sqrt{2}}{2}$	$B.\frac{\sqrt{2}}{2}I$	C.1		D.i
3.在研究成对数据	的统计相关性时门	下列说法错误的是	RŽÝL.	

- A.样本相关系数为 r 则 |r| 越大,成对样本数据的线性相关程度越强
- B.用最小二乘法得到的经验回归方程 $\hat{y} = \hat{b}x + \hat{a}$ 一定经过样本点中心 (\bar{x}, \bar{y})
- C.用相关指数 R^2 来刻画模型的拟合效果时,若 R^2 越小,则相应模型的拟合效果越好
- D.用残差平方和来刻画模型的拟合效果时,若残差平方和越小,则相应模型的拟合效果越好
- 4.己知 4 3^m=3 2ⁿ=1,则

A.m>n>-1 B.n>m>-1 C.m<n<-1 D.n<m<-1 5.已知圆长轴、短轴的一个端点分别为 A,B,F 为圆的一个焦点,若 ΔABF 为直角三角形,则该椭圆的离心率为

A.
$$\frac{\sqrt{2}}{2}$$
 B. $\frac{\sqrt{2}}{4}$ C. $\frac{\sqrt{5-1}}{2}$ D. $\frac{\sqrt{5+1}}{4}$

6.在 Rt $\triangle ABC$ 中,| \overrightarrow{AC} |=| \overrightarrow{BC} |=4,D 是以 BC 为直径的圆上一点,则| \overrightarrow{AB} + \overrightarrow{AD} 的最大值为

A.12 B.8
$$\sqrt{2}$$
 C.5 $\sqrt{6}$ D.6 $\sqrt{5}$ 7.已知球 O 与圆台 O_1O_2 的上、下底面及母线均相切,且圆台 O_1O_2 的上、下底面

7.已知球 O 与圆台 O_1O_2 的上、卜底面及母线均相切,且圆台 O_1O_2 的上、卜底面 半径之比为 $\frac{1}{2}$,记球 O 与圆台 O_1O_2 的表面积分别为 S_1 、 S_2 ,则

A.
$$S_1 = \frac{1}{2} S_2$$
 B. $S_1 = \frac{4}{7} S_2$ C. $S_1 = \frac{5}{7} S_2$ D. $S_1 = \frac{8}{9} S_2$

8.设函数 y=f(x)的定义域为 $\mathbf{R},g(x)=f(x+1)$ 为偶函数,g(2x-2)为奇函数,则一定有

A.
$$\sum_{i=1}^{2022} f(i) = 0$$
 B. $\sum_{i=1}^{2022} g(i) = 0$ C. $\sum_{i=1}^{2023} f(i) = -f(0)$ D. $\sum_{i=1}^{2023} g(i) = f(1)$

- 二、多项选择题:本大题共4个小题每小题5分共20分,在每小题给出的四个选 项中,有多项符合题目要求.全部选对的得5分选对但不全的得3分有选错的得0
- 9.已知函数 $f(x)=e^{x}+e^{-x}$, f'(x)为 f(x)的导函数,则

A.f(x)的最小值为 2

B.f'(x)在(-∞, +∞)单调递增

C.直线 $y=(e+e^{-1})x$ 与曲线 y=f(x)相切 D.直线 y=2x 与曲线 y=f'(x)相切

10.已知抛物线 $C:y=\frac{1}{4}x^2$ 的焦点为 F,P,Q 为 C 上两点,则下列说法正确的是

A.若 M(2.3).则|PM|+|PF|的最小值为 4

B.若 N(0,-1),记 $\angle PNF=\theta$,则 $\cos\theta \in [\frac{\sqrt{2}}{2}, 1]$

C.过点(3.2)与 C 只有一个公共点的直线有且仅有两条

D.以 PO 为直径的圆与 C 的准线相切,则直线 PO 过 F

11.在正三棱台 ABC-A₁B₁C₁ 中,A₁B₁=1,AA₁=2, AB=3, \overrightarrow{BM} =2 \overrightarrow{MA} , \overrightarrow{CN} =2 \overrightarrow{NA} ,过 MN 与 AA_1 平行的平面记为 α ,则下列命题正确的是

A.四面体 ABB₁C₁ 的体积为

B 四面体 ABB₁C₁ 外接球的表面积为 12π

C.α截棱台所得截面面积为 2

D.α将棱台分成两部分的体积比为 $\frac{3}{13}$

12.数列 $\{a_n\}, a_1=a_2=1, a_{n+2}=a_n+a_{n+1} (n \in \mathbb{N}^*)$,该数列为著名的裴波那契数列,它是自 然界的产物揭示了花瓣的数量、树木的分叉、植物种子的排列等植物的生长规律, 则下面结论正确的是

A.
$$a_2+a_4+\cdots a_{2n}=a_{2n+1}-1$$

B. $a_1^2+a_2^2+\cdots +a_n^2=a_na_{n+1}$

D.数列
$$\{a_{n+1} + \frac{1-\sqrt{5}}{2} a_n\}$$
为等比数列

C.数列
$$\{a_{n+1} - \frac{1+\sqrt{5}}{2} a_n\}$$
为等比数列

三、填空题:本题共 4 小题,每小题 5 分,共 20 分.

13.2022 年 12 月 18 日在卡塔尔世界杯决赛中,阿根廷队战胜法国队冠 222 卡塔 尔世界杯也缓缓落下了帷幕下表是连续 8 届世界杯足球寨的进球总数:

74 · L / / / / L	TEAT TO CONTRACT TO THE REPORT OF THE PROPERTY							
年份	1994	1998	2002	2006	2010	2014	2018	2022
进球总数	141	171	161	147	145	171	169	172

则进球总数的第 60 百分位数是

14.已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega \neq 0)$ 具有下列三个性质:①图象关于 $x = \frac{\pi}{3}$ 对

称;②在区间 $(0,\frac{\pi}{2})$ 上单调递减;③ 最小正周期为 π ,则满足条件的一个函数

f(*x*)=______。

15. 已知函数 $f(x)=(\ln x)^2-ax^2$ 有两个极值点,则实数 a 的取值范围是

16.已知 A,B 分别为圆 $(x-1)^2+y^2=1$ 与圆 $(x+2)^2+y^2=4$ 上的点,O 为坐标原点,则 ΔOAB 面的最大值为

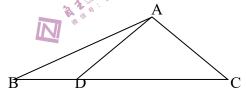
四、解答题:本大题共6小题共70分解答应写出文字说明证明过程或演算步骤17.(10分)

已知数列 $\{a_n\}$ 的前n项和为 $S_n,S_nS_{n+1}+1=2S_n$ 。

- (1)若 $S_n \neq 1$,证明:数列 $\{\frac{1}{S_n-1}\}$ 为等差数列
- (2)若 a_1 =2, $|a_n|$ < $\frac{1}{1000}$,求 n 的最小值。

18.(12 分)

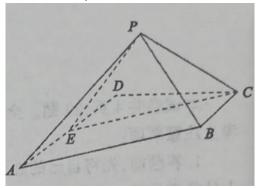
某校工会为弘扬体育精神推动乒乓球运动的发展现组织 A、B 两团体运动员进行比赛。其中 A 团体的运动员 3 名,其中种子选手 2 名;B 团体的运动员 5 名,其中种子选手 $m(1 \le m \le 5)$ 名.从这 8 名运动员中随机选择 4 人参加比赛.


(1)已知 *m*=2,若选出的 4 名运动员中恰有 2 名种子选手,求这 2 名种子选手来自团 体 A 的概率;

(2)设X为选出的 4 人中种子选手的人数,确定 m 的值,使得在X的所有取值中,事件 X=2 的概率最大。

19.(12 分)

在ΔABC 中,角 A,B,C 所对边长分别为 a,b,c,满足 $(a-b)(\sin A + \sin B) = (b+c)\sin C$.


(1)求 ZA 的大小;

(2)AB= $2\sqrt{2}$,点 D 在 BC 上,AD \perp AC,在①BD= $\sqrt{3}$,②cos \angle ADC= $\frac{\sqrt{3}}{3}$

③ $\frac{BD}{DC} = \frac{\sqrt{6+1}}{5}$ 这三个条件中任选一个作为条件,求 ΔABC 的面积

20.(12 分)

在梯形 ABCD 中, $\angle ADC = \angle BCD = 90^\circ$, $AD = 2BC = \sqrt{2}$ CD = 2, EC 为 EC 为 EC 的位置,且 EC 的过程,

(1)求证:平面 PAE L 平面 PBC:

(2)判断在线段 AP 上是否存在点 Q,使得直线 BQ 与平面 PEC 成角的正弦值 为 $\frac{\sqrt{3}}{6}$ 。若存在,求出 AQ 的长;若不存在,请说明理由

21.(12分)

已知双曲线 $C: \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ (a>0,b>0),直线 l 在 x 轴上方与 x 轴平行,交双曲线 C 于 a,b 两点,直线 b 交 b 轴于点 b. 当 b 经过 b 的焦点时,点 a 的坐标为(6,4). (1)求 b 的方程:

(2)设 OD 的中点为 M,是否存在定直线 l,使得经过 M 的直线与 C 交于 P, Q,与 线段 AB 交于点 N, \overrightarrow{PM} = $\lambda \overrightarrow{PN}$, \overrightarrow{MQ} = $\lambda \overrightarrow{QN}$ 均成立若存在,求出 l 的方程;若不存在,请说明理由。

22.(12分)

已知函数 $f(x)=e^{x}+\frac{1}{x}$,f'(x)为f(x)的导函数

- (1)讨论 f'(x)的单调性;
- (2)当x>0时f(x)=ax有且只有两根 $x_1,x_2(x_1< x_2)$ 。
- ①若 $0 < x_1 < 1 < x_2, 求实数 a$ 的取值范围;
- ②证明: $\frac{1}{x_1} + \frac{1}{x_2} < \frac{2a}{3} \frac{1}{6}$.