# 2023 北京朝阳高二(下)期末

### 数学

|                                                                         |                                                         | 数                                | 学                                    |                             |            |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|--------------------------------------|-----------------------------|------------|--|--|
|                                                                         |                                                         |                                  |                                      |                             | 2023.7     |  |  |
| (考试时间 120 分钟 满分 150 分)                                                  |                                                         |                                  |                                      |                             |            |  |  |
| 本试卷分为选择题 50 分和非选择题 100 分                                                |                                                         |                                  |                                      |                             |            |  |  |
| 2023.7 (考试时间 120 分钟 满分 150 分) 本试卷分为选择题 50 分和非选择题 100 分 第一部分(选择题 共 50 分) |                                                         |                                  |                                      |                             |            |  |  |
| 一、选择题共 $10$ 小题,每小题 $5$ 分,共 $50$ 分。在每小题列出的四个选项中,选出符合题目要求的一项。             |                                                         |                                  |                                      |                             |            |  |  |
| (1) 已知集合                                                                | $A = \{-1,0,1,2\}$ , 集台                                 | $B = \{x \mid -1 \le x < 1\}$    | $\}$ ,                               |                             |            |  |  |
| $(A) \{0,1\}$                                                           | $(B) \{-1\}$                                            | ,1} (C)                          | $\{-1,0\}$                           | (D) $\{-1,0,1\}$            |            |  |  |
| α∈(α<br>(2) 己知                                                          | $(\frac{\pi}{2},\pi)$ , $\mathbb{H}^{\sin(\pi-\alpha)}$ | $=\frac{1}{3}$ , $\sin \alpha =$ |                                      |                             |            |  |  |
| $(A) -\frac{2\sqrt{3}}{3}$                                              | $\frac{\sqrt{2}}{3}$ (B) $\frac{2}{3}$                  | 1 <sup>5</sup> (C)               | $\frac{2}{3}$                        | $(D) \ \frac{2\sqrt{2}}{3}$ |            |  |  |
| (3) 已知不等:                                                               | 式 $x^2 + ax + 4 < 0$ 的解                                 | <b>军集为空集,则实</b>                  | 数 <i>a</i> 的取值范围                     | 是                           |            |  |  |
| (A) (-∞,                                                                | $-4) \bigcup (4,+\infty)$                               |                                  | $(-\infty, -4] \bigcup [4, +\infty]$ |                             |            |  |  |
| (C) (-4,                                                                | 4)                                                      | (D)                              | [-4, 4]                              |                             |            |  |  |
| (4) 从集合 {2,3,4,5,6,7,8} 中任取两个不同的数,则取出的两个数中恰有一个是奇数的概率为                   |                                                         |                                  |                                      |                             |            |  |  |
| $(A) \ \frac{2}{7}$                                                     | (B) $\frac{3}{7}$                                       | (C)                              | <del>4</del> <del>7</del>            | (D) $\frac{6}{7}$           | A LS. COM  |  |  |
| a = lg (5) 己知                                                           | $5\frac{1}{3}$ , $b=3^{0.1}$ , $c=\sin \frac{1}{3}$     | n3, 则                            |                                      | 1 N.1                       | 1,1        |  |  |
| (A) $a > b$                                                             | o > c (B) $b > c$                                       | c > a (C)                        | b > a > c                            | (D) $c > b > a$             |            |  |  |
| (6) 设 $a,b \in \mathbb{R}$ ,则" $(a-b)a^2 < 0$ "是" $a < b$ "的            |                                                         |                                  |                                      |                             |            |  |  |
| (A) 充分                                                                  | 而不必要条件                                                  | (B)                              | 必要而不充分象                              | 条件                          |            |  |  |
| (C) 充分                                                                  | 必要条件                                                    | (D)                              | 既不充分也不必                              | 必要条件                        |            |  |  |
| (7) 某学校 4:                                                              | 名同学到3个小区参                                               | 加垃圾分类宣传》                         | 舌动,每名同学                              | 只能去1个小区                     | ,且每个小区至少安排 |  |  |
| 1名同学,                                                                   | 则不同的安排方法                                                | 种数为                              |                                      |                             |            |  |  |
| (A) 6                                                                   | (B) 12 <sup>1</sup>                                     | (C)                              | 24                                   | (D) 36                      |            |  |  |
|                                                                         | $f(x) = \sin(2x - \frac{\pi}{3}),$ $f(x + \pi) $ 的一个周期  | π                                | <b></b>                              |                             |            |  |  |

(B) 函数  $f(x+\pi)$  的一个零点为  $\frac{\pi}{6}$ 

|              | (C) $y = f(x)$ 的图象可由 $y = \sin 2x$ 的图象向右平移 $\frac{\pi}{3}$ 个单位长度得到                                                                  |                        |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|              | (D) $y = f(x)$ 的图象关于直线 $x = \frac{3\pi}{2}$ 对称                                                                                      | \frac{1}{2}            |
| (9)          | 9) 良好生态环境既是自然财富,也是经济财富.为了保护生态环境,某工厂将                                                                                                | <b></b><br>子产生的废气经过过滤后 |
|              | 排放,已知过滤过程中的污染物的残留数量 $^{y}$ (单位:毫克 $^{/}$ 升)与过滤时                                                                                     | <b>旬</b> (单位:小时)之间     |
|              | 的函数关系为 $y=y_0e^{-kt}(t\geq 0)$ , $k$ 为常数且 $k>0$ , $y_0$ 为原污染物数量. 该                                                                  | . 「某次讨滤废气时, 若          |
|              | 前4个小时废气中的污染物恰好被过滤掉90%,那么再继续过滤2小时,废                                                                                                  | , *                    |
|              | 为原污染物数量的                                                                                                                            |                        |
|              | (A) 1% (B) 2% (C) 3% (D) 5%                                                                                                         |                        |
| (10)         | 10) 已知定义在 $\mathbf{R}$ 上的函数 $f^{(x)}$ 满足:                                                                                           |                        |
|              | ① $f(2+x)+f(-x)=0$ ;                                                                                                                |                        |
|              | (2) f(-1+x) = f(-1-x) ;                                                                                                             |                        |
|              | $\int_{\cos^2 x} \frac{\pi}{x} x \in [-1, 0]$                                                                                       |                        |
|              | ③ $\triangleq x \in [-1,1]$ $\exists f(x) = \begin{cases} \cos \frac{\pi}{2} x, & x \in [-1,0], \\ 1-x, & x \in (0,1], \end{cases}$ |                        |
|              | N. C.                                                                                           |                        |
|              | 则函数 $g(x) = f(x) + \frac{1}{2}$ 在区间 [-5,3] 上的零点个数为                                                                                  |                        |
|              | (A) 3 (B) 4 (C) 5 (D) 6                                                                                                             | RAS                    |
|              |                                                                                                                                     | E Ky om                |
|              | 第二部分(非选择题 共100分)                                                                                                                    | 15.00                  |
| <sub>†</sub> | 、填空题共 6 小题,每小题 5 分,共 30 分。                                                                                                          | 1,1                    |
|              | "M"                                                                                                                                 |                        |
| (11)         | 11) 二项式 $(x + \frac{2}{x})^6$ 的展开式中的常数项是 (用数字作答)                                                                                    |                        |
| (12)         | 12) 某中学高一、高二、高三年级的学生人数分别为 1200, 1000, 800, 为迎持                                                                                      | <b>曼运动会的到来,按照各</b>     |
|              |                                                                                                                                     | 1 301 51               |

(12 年级人数所占比例进行分层抽样,选出30名志愿者,则高二年级应选出的人数为\_

(13) 当 
$$x > -1$$
 时,函数  $y = x + \frac{4}{x+1} - 2$  的最小值为\_\_\_\_\_,此时  $x = _____$ .

(14) 已知a > 0,则关于x的不等式 $x^2 - 4ax - 5a^2 < 0$ 的解集是\_\_\_\_\_.

(15) 若函数  $y = \cos 2x$  的图象在区间  $(-\frac{\pi}{4}, m)$  上恰有两个极值点,则满足条件的实数 m 的一个取值为

(16) 已知集合 $^{M}$  为非空数集,且同时满足下列条件:

 $(i) 2 \in M$ ;

- (ii) 对任意的 $x \in M$ , 任意的 $y \in M$ , 都有 $x y \in M$ ;
- (iii) 对任意的 $x \in M$  且 $x \neq 0$ , 都有 $x \in M$

给出下列四个结论:

- $\bigcirc 0 \in M$ ;
- $\bigcirc 1 \notin M$ :
- ③对任意的 $^{x,y\in M}$ ,都有 $^{x+y\in M}$ ;
- ④对任意的 $^{x,y\in M}$ ,都有 $^{xy\in M}$ .

其中所有正确结论的序号是\_\_\_\_\_.



三、解答题共5小题,共70分。解答应写出文字说明,演算步骤或证明过程。

### (17) (本小题 13分)

设函数  $f(x)=2\sin\omega x\cos\omega x+m(\omega>0,m\in\mathbf{R})$  ,从条件①、条件②、条件③这三个条件中选择两个作为己知,使函数 唯一确定.

(I) 求*ω*和*m*的值;

$$g(x) = f(x - \frac{\pi}{6})$$
, 求  $g(x)$  在区间  $[0, \frac{\pi}{2}]$  上的最大值.

条件①: f(0)=1:

条件②: 的最小值为 $^{0}$ ;

条件③: 的图象的相邻两条对称轴之间的距离为 $^{2}$ .

注:如果选择的条件不符合要求,得0分;如果选择多组条件分别解答,按第一组解答计分

#### (18)(本小题 14分)

某保险公司 2022 年的医疗险理赔服务报告给出各年龄段的投保情况与理赔情况,统计结果如下:



注: 第1组中的数据 13%表示 0-5 岁年龄段投保人数占全体投保人数的百分比为 13%;

24%表示 0-5 岁年龄段理赔人数占全体理赔人数的百分比为 24%。 其它组类似.

- (I)根据上述数据,估计理赔年龄的中位数和第90百分位数分别在第几组,直接写出结论;
- (II) 用频率估计概率,从 2022 年在该公司投保医疗险的所有人中随机抽取 3 人,其中超过 40 岁的人数记为 X ,求 X 的分布列及数学期望:
- (III)根据上述数据,有人认为"该公司 2022 年的理赔的平均年龄一定小于投保的平均年龄",判断这种说法是否正确,并说明理由.
- (19)(本小题 15分)

己知函数  $f(x) = \ln x - ax \ (a \in \mathbf{R})$ .

- (I) 当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程:
- (III) 是否存在a,使得 在区间 上的最大值为-2?若存在,求出a的值;若不存在,说明理由.
- (20) (本小题 13分)

戸知政教  $f(x) = e^{2x}$  g(x) = m(2x+1)  $(m \in \mathbf{R})$ 

- (I) 当 时,证明
- (II) 若直线 y=g(x) 是曲线 y=f(x) 的切线,设 h(x)=f(x)-g(x) ,求证:对任意的 ,都有
- (21) (本小题 15分)

若有穷整数数列  $A: a_1, a_2, \cdots, a_n$  满足  $1 \leq a_i \leq n$  ( $i=1,2,\cdots,n$ ),且各项均不相同,则称 A 为  $P_n$  数

列. 对  $P_n$  数列  $A:a_1,a_2,\cdots,a_n$ ,设 A 的导出数列.  $\lambda_i = \sum_{j=1}^{i-1} \frac{a_i-a_j}{|a_i-a_j|} (i=2,3,\cdots,n)$ ,则称数列  $\lambda(A):\lambda_1,\lambda_2,\cdots,\lambda_n$  为数列  $\lambda(A):\lambda_1,\lambda_2,\cdots,\lambda_n$  为数列

- (I) 分别写出 $P_4$ 数列 与 的导出数列;
- (II) 是否存在  $^{P_c}$  数列  $^{A}$  使得其导出数列  $^{\lambda(A)}$  的各项之和为  $^{0}$  2 若存在,求出所有符合要求的  $^{P_c}$  数列;若不存在,说明理由;
- (III) 设 $^{P_n}$ 数列 $^{A:a_1,a_2,\cdots,a_n}$ 与 $^{A':a_1',a_2',\cdots,a_n'}$ 的导出数列分别为 $^{\lambda(A):\lambda_1,\lambda_2,\cdots,\lambda_n}$ 与 $^{\lambda(A'):\lambda_1',\lambda_2',\cdots,\lambda_n'}$ ,求证:

(考生务必将答案答在答题卡上,在试卷上作答无效)

## 考答案

- 一、选择题(共10小题,每小题5分,共50分)
  - (1) C
- (2) A
- (3) D
- (4) C
- (5) B

- (6) A
- (7) D
- (8) B
- (9) C

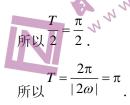
- 二、填空题(共6小题,每小题5分,共30分)
  - (11) 160
- (12) 10

- (14) (-a,5a)
- (15) <sup>π</sup> (答案不唯一)



- 三、解答题(共5小题,共70分)
- (17) (共13分)
- 解: 选①③.
  - (I)  $\exists f(x) = 2\sin \omega x \cos \omega x + m = \sin 2\omega x + m$

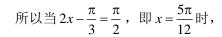
由 
$$f(0) = 1$$
,得  $m=1$ 



- 因为 $\omega > 0$ ,所以 $\omega = 1$ .
- (II) 由(I)可知 $f(x) = \sin 2x + 1$ .

$$g(x) = f(x - \frac{\pi}{6}) = \sin(2x - \frac{\pi}{3}) + 1$$

因为 $x \in [0, \frac{\pi}{2}]$ ,所以 $2x - \frac{\pi}{3} \in [-\frac{\pi}{3}, \frac{2\pi}{3}]$ .





选②③.

(I) 因为 $f(x) = 2\sin \omega x \cos \omega x + m = \sin 2\omega x + m$ ,

的最小值为0,得

的图象的相邻两条对称轴之间的距离为2,

 $\frac{T}{2} = \frac{\pi}{2}$ .

所以 
$$T = \frac{2\pi}{|2\omega|} = \pi$$

(Ⅱ) 同选①③.

(18) (共14分)

- 解:(I)理赔年龄的中位数在第4组,理赔年龄的第90百分位数在第5组. ......4分
  - (Ⅱ)用频率估计概率,从投保医疗险的人中随机抽取1人超过40岁的概率为4

X 的所有可能取值为0,1,2,3.

$$P(X = 0) = C_3^0 (\frac{1}{4})^0 (\frac{3}{4})^3 = \frac{27}{64}$$

$$P(X = 1) = C_3^1 (\frac{1}{4})^1 (\frac{3}{4})^2 = \frac{27}{64}$$

$$P(X = 2) = C_3^2 (\frac{1}{4})^2 (\frac{3}{4})^1 = \frac{9}{64}$$

$$P(X=3) = C_3^3 (\frac{1}{4})^3 (\frac{3}{4})^0 = \frac{1}{64}$$

所以随机变量X的分布列为:

$$X \qquad 0$$

$$P \qquad \frac{27}{64}$$

$$\frac{1}{\frac{27}{64}}$$

$$\frac{2}{\frac{9}{64}}$$

$$\frac{1}{64}$$

所以随机变量 X 的数学期望

$$E(X) = 0 \times \frac{27}{64} + 1 \times \frac{27}{64} + 2 \times \frac{9}{64} + 3 \times \frac{1}{64} = \frac{3}{4}$$

(III) 不正确.

比如理赔的年龄比较靠近每一组区间的右端点,

投保的年龄比较接近每一组区间的左端点,

这样估计的结果就是理赔的平均年龄较大.

用区间的右端点估计理赔的平均年龄为

 $5 \times 0.24 + 20 \times 0.07 + 30 \times 0.12 + 40 \times 0.35 + 50 \times 0.15 + 60 \times 0.05 + 70 \times 0.019 + 100 \times 0.001$ = 32.13.

用区间的左端点估计投保的平均年龄为

 $0 \times 0.13 + 6 \times 0.13 + 21 \times 0.16 + 31 \times 0.33 + 41 \times 0.11 + 51 \times 0.09 + 61 \times 0.04 + 71 \times 0.01$ = 26.62,

因为 32.13>26.62, 所以说法不正确. ......14 分

(19) (共15分)

解: 函数  $f(x) = \ln x - ax$  的定义域为  $(0, +\infty)$  ,则  $f'(x) = \frac{1}{x} - a$ 

(1) = a = 3 H,  $f(x) = \ln x - 3x$ , Fix f(1) = -3.

因为 
$$f'(x) = \frac{1}{x} - 3$$
 ,所以  $f'(1) = 1 - 3 = -2$ 

所以 
$$f(x) = \ln x - \frac{1}{2}x$$
 ,  $f'(x) = \frac{1}{x} - \frac{1}{2}$ 

当 0 < x < 2 时, f'(x) > 0 , 单调递增; 当 x > 2 时, f'(x) < 0 , 单调递减. 所以当  $a = \frac{1}{2}$  时, x = 2 是 的极大值点.

此时 的单调递增区间为(0,2)......9分

 $a \leq \frac{1}{e}$  时,

因为
$$x \in (0,e]$$
,  $f'(x) = \frac{1}{x} - a \ge \frac{1}{e} - a \ge 0$ ,

所以 在区间 上单调递增.

此时  $f(x)_{\text{max}} = f(e) = \ln e - ae = 1 - ae$ .

 $a = \frac{3}{6}$ 若1-ae = -2,则  $a = \frac{3}{6}$  e,不合题意.

②当
$$a > \frac{1}{e}$$
, 即 $0 < \frac{1}{a} < e$  时,

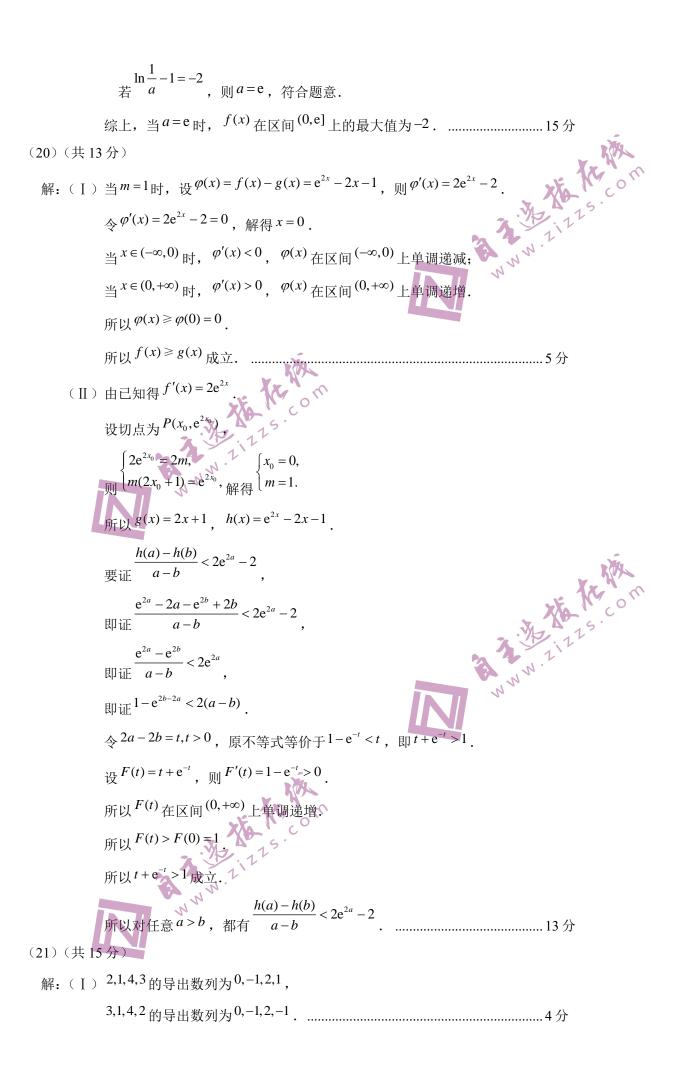
$$f'(x) = \frac{1}{x} - a = 0, \quad \text{if } x = \frac{1}{a}.$$

当 
$$0 < x < \frac{1}{a}$$
 时,  $f'(x) > 0$  , 单调递增

令 
$$f'(x) = \frac{1}{x} - a = 0$$
 , 解得  $x = \frac{1}{a}$  .   
当  $0 < x < \frac{1}{a}$  时,  $f'(x) > 0$  , 单调递增;   
当  $\frac{1}{a} < x < e$  时,  $f'(x) < 0$  , 单调递减.   
此时  $f(x)_{\max} = f(\frac{1}{a}) = \ln \frac{1}{a} - 1$  .

此所 
$$f(x)_{\text{max}} = f(\frac{1}{a}) = \ln \frac{1}{a} - 1$$





### (II) 不存在, 理由如下:

 $A: a_1, a_2, a_3, a_4, a_5, a_6$ 

$$\lim_{\| \mathbf{J}_1 \|} \lambda_1 = 0 \ , \quad \lambda_2 = \frac{a_2 - a_1}{|a_2 - a_1|} \ , \quad \lambda_3 = \frac{a_3 - a_1}{|a_3 - a_1|} + \frac{a_3 - a_2}{|a_3 - a_2|} \ ,$$

$$\lambda_4 = \frac{a_4 - a_1}{|a_4 - a_1|} + \frac{a_4 - a_2}{|a_4 - a_2|} + \frac{a_4 - a_3}{|a_4 - a_3|}$$

$$\lambda_5 = \frac{a_5 - a_1}{|a_5 - a_1|} + \frac{a_5 - a_2}{|a_5 - a_2|} + \frac{a_5 - a_3}{|a_5 - a_3|} + \frac{a_5 - a_4}{|a_5 - a_4|}$$

$$\lambda_6 = \frac{a_6 - a_1}{|a_6 - a_1|} + \frac{a_6 - a_2}{|a_6 - a_2|} + \frac{a_6 - a_3}{|a_6 - a_3|} + \frac{a_6 - a_4}{|a_6 - a_4|} + \frac{a_6 - a_5}{|a_6 - a_5|}$$

因为 
$$\frac{a_i - a_j}{|a_i - a_j|} \in \{-1,1\} (i \neq j)$$
 所以  $\lambda_2 \in \{-1,1\}$  是奇数,

 $\lambda_3 \in \{-2,0,2\}$  是偶数,

 $\lambda_4 \in \{-3, -1, 1, 3\}$  是奇数,

$$\lambda_5 \in \{-4, -2, 0, 2, 4\}$$
 是偶数,

$$\lambda_6 \in \{-5, -3, -1, 1, 3, 5\}$$
 是奇数.

因为 $\lambda_2,\lambda_4,\lambda_6$ 共三个奇数,

f(1)  $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6$  县奇数

所以  $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6$  不可能为 0. ......

### (III) 必要性: $\not\equiv a_i = a_i'(i=1,2,\cdots,n)$

$$||\lambda_1| = \lambda_1' = 0$$

$$\lambda_{i} = \sum_{j=1}^{i-1} \frac{a_{i} - a_{j}}{|a_{i} - a_{j}|} = \sum_{j=1}^{i-1} \frac{a'_{i} - a'_{j}}{|a'_{i} - a'_{j}|} = \lambda'_{i} (i = 2, 3, \dots, n)$$

充分性:下面用反证法证明.

假设存在  $i \in \{1, 2, \dots, n\}$ , 使得  $a_i \neq a_i'$ .

若
$$a_n \neq a'_n$$
,  $\diamondsuit k = n$ .

$$a_n = a'_n, a_{n-1} = a'_{n-1}, \dots, a_{j+1} = a'_{j+1}, a_j \neq a'_j, \implies k = j$$

因为
$$\{a_1, a_2, \dots, a_n\} = \{a'_1, a'_2, \dots, a'_n\}$$

所以 $\{a_1, a_2, \dots, a_k\} = \{a'_1, a'_2, \dots, a'_k\}$ .

设 $a_1, a_2, \cdots, a_{k-1}$ 中有l项比 $a_k$ 小,则有k-l-1项比 $a_k$ 大,

所以  $\lambda_k = l - (k - l - 1) = 2l - k + 1$ .

设 $a'_1, a'_2, \cdots, a'_{k-1}$ 中有l'项比 $a'_k$ 小,则有k-l'-1项比 $a'_k$ 大,

所以  $\lambda'_k = l' - (k - l' - 1) = 2l' - k + 1$ .

因为 $\{a_1, a_2, \dots, a_k\} = \{a_1', a_2', \dots, a_k'\}$ 且 $a_k \neq a_k'$ ,所以 $l \neq l'$ ,

所以 $\lambda_k \neq \lambda'_k$ , 矛盾.

所以  $a_i = a'_i (i = 1, 2, \dots, n)$  . ...

15 🗸

N.N. Zills.com

N.W. Zills.com



